
Факториза́цией натурального числа называется его разложение в произведение простых множителей. Существование и единственность такого разложения следует из основной теоремы арифметики.
Алгоритм сортировки — это алгоритм для упорядочивания элементов в списке. В случае, когда элемент в списке имеет несколько полей, поле, служащее критерием порядка, называется ключом сортировки. На практике в качестве ключа часто выступает число, а в остальных полях хранятся какие-либо данные, никак не влияющие на работу алгоритма.
Квантовый алгоритм — алгоритм, предназначенный для выполнения на квантовом компьютере.
Оптимизация — модификация системы для улучшения её эффективности. Система может быть одиночной компьютерной программой, цифровым устройством, набором компьютеров или даже целой сетью.
Вычисли́тельная сло́жность — понятие в информатике и теории алгоритмов, обозначающее функцию зависимости объёма работы, которая выполняется некоторым алгоритмом, от размера входных данных. Раздел, изучающий вычислительную сложность, называется теорией сложности вычислений. Объём работы обычно измеряется абстрактными понятиями времени и пространства, называемыми вычислительными ресурсами. Время определяется количеством элементарных шагов, необходимых для решения задачи, тогда как пространство определяется объёмом памяти или места на носителе данных. Таким образом, в этой области предпринимается попытка ответить на центральный вопрос разработки алгоритмов: «как изменится время исполнения и объём занятой памяти в зависимости от размера входа?». Здесь под размером входа понимается длина описания данных задачи в битах, а под размером выхода — длина описания решения задачи.
В вычислительной геометрии известна задача об определении принадлежности точки многоугольнику. На плоскости даны многоугольник и точка. Требуется решить вопрос о принадлежности точки многоугольнику.
Односторонняя функция — математическая функция, которая легко вычисляется для любого входного значения, но трудно найти аргумент по заданному значению функции. Здесь «легко» и «трудно» должны пониматься с точки зрения теории сложности вычислений. Разрыв между сложностью прямого и обратного преобразований определяет криптографическую эффективность односторонней функции. Неинъективность функции не является достаточным условием для того, чтобы называть её односторонней. Односторонние функции могут называться также трудно обратимыми или необратимыми.
В информатике временна́я сложность алгоритма определяется как функция от длины строки, представляющей входные данные, равная времени работы алгоритма на данном входе. Временная сложность алгоритма обычно выражается с использованием нотации «O» большое, которая учитывает только слагаемое самого высокого порядка, а также не учитывает константные множители, то есть коэффициенты. Если сложность выражена таким способом, говорят об асимптотическом описании временной сложности, то есть при стремлении размера входа к бесконечности. Например, если существует число
, такое, что время работы алгоритма для всех входов длины
не превосходит
, то временную сложность данного алгоритма можно асимптотически оценить как
.
Парадо́кс Риша́ра — семантический парадокс, впервые описанный французским математиком Жюлем Ришаром в 1905 году.
Алгоритм Гёрцеля — это специальная реализация дискретного преобразования Фурье (ДПФ) в форме рекурсивного фильтра. Данный алгоритм был предложен Джеральдом Гёрцелем в 1958 году. В отличие от быстрого преобразования Фурье, вычисляющего все частотные компоненты ДПФ, алгоритм Гёрцеля позволяет эффективно вычислить значение одного частотного компонента.
Криптосистема Гольдвассер — Микали (GM) — криптографическая система с открытым ключом, разработанная Шафи Гольдвассер и Сильвио Микали в 1982 году. GM является первой схемой вероятностного шифрования с открытым ключом, доказуемо стойкая при стандартных криптографических предположениях. Однако, криптосистема GM является неэффективной, так как шифртекст может быть в сотни раз длиннее, чем шифруемое сообщение. Для доказательства свойств стойкости криптосистемы Голдвассер и Микали ввели широко используемое понятие семантической стойкости.
Компромисс времени и памяти — компромиссный подход к решению ряда задач в информатике, при котором используется обратное соотношение требуемого объёма памяти и скорости выполнения программы: время вычислений может быть увеличено за счёт уменьшения используемой памяти или, наоборот, снижено за счёт увеличения объёма используемой памяти.
Поточный алгоритм — алгоритм для обработки последовательности данных в один или малое число проходов.
Алгоритм Полларда — Штрассена является самым популярным среди алгоритмов факторизации целых чисел с экспоненциальной сложностью, так как имеет наилучшую оценку сложности и однозначно находит разложение числа n на два множителя за
арифметических операций. Алгоритм основан на следующей теореме.

Евклидово минимальное остовное дерево — это минимальное остовное дерево набора из n точек на плоскости, где вес ребра между любой парой точек является евклидовым расстоянием между двумя точками. Простыми терминами, EMST связывает набор точек с помощью отрезков так, что общая длина всех отрезков минимальна и любая точка может быть достигнута из другой точки по этим отрезкам.
ZK-STARK — криптографический протокол, который использует публичные вероятностно проверяемые доказательства с нулевым разглашением. Эта технология позволяет пользователям обмениваться проверенной информацией без её разглашения или выполнять вычисления с третьей стороной без раскрытия вычислений. ZK-STARK — прозрачный протокол, то есть не требующий предварительной настройки и раскрытия информации третьей стороне, такие протоколы ещё называют протоколами Артура-Мерлина.
В информатике префиксная сумма, кумулятивная сумма, инклюзивное сканирование или просто сканирование последовательности чисел x0, x1, x2, … называется последовательность чисел y0, y1, y2, …, являющаяся префиксной суммой от входной последовательности:
- y0 = x0
- y1 = x0 + x1
- y2 = x0 + x1+ x2
- …
Алгоритм Тоома — Кука, иногда упоминаемый как Tоом-3 — это алгоритм умножения больших чисел, названный именами Андрея Леоновича Тоома, предложившего новый алгоритм с низкой сложностью и Стивена Кука, более ясно его описавшего.