
Ферме́нты, или энзи́мы , — обычно сложные белковые соединения, РНК (рибозимы) или их комплексы, ускоряющие химические реакции в живых системах. Каждый фермент, свернутый в определённую структуру, ускоряет соответствующую химическую реакцию: реагенты в такой реакции называются субстратами, а получающиеся вещества — продуктами. Ферменты специфичны к субстратам: АТФ-аза катализирует расщепление только АТФ, а киназа фосфорилазы фосфорилирует только фосфорилазу.

Клеточный рецептор — молекула на поверхности клетки, клеточных органелл или растворенная в цитоплазме. Специфично реагирует изменением своей пространственной конфигурации на присоединение к ней молекулы определённого химического вещества, передающего внешний регуляторный сигнал и, в свою очередь, передает этот сигнал внутрь клетки или клеточной органеллы, нередко при помощи так называемых вторичных посредников или трансмембранных ионных токов.

Иммуноферментный анализ — лабораторный иммунологический метод качественного или количественного определения различных низкомолекулярных соединений, макромолекул, вирусов и пр., в основе которого лежит специфическая реакция антиген-антитело. Выявление образовавшегося комплекса проводят с использованием фермента в качестве метки для регистрации сигнала. Теоретические основы ИФА опираются на современную иммунохимию и химическую энзимологию, знание физико-химических закономерностей реакции антиген-антитело, а также на основные принципы аналитической химии.

В биологии активный центр — это область фермента, где молекулы субстрата связываются и подвергаются химической реакции. Активный центр состоит из аминокислотных остатков, которые образуют временные связи с субстратом, и остатков, которые катализируют реакцию этого субстрата. Хотя активный центр занимает только ~ 10-20 % от объёма фермента он является наиболее важной частью, поскольку он непосредственно катализирует химическую реакцию. Обычно активный центр состоит из трех-четырех аминокислот, в то время как другие аминокислоты в белке необходимы для поддержания его третичной структуры.
Агонист — химическое соединение (лиганд), которое при взаимодействии с рецептором изменяет его состояние, приводя к биологическому отклику. Обычные агонисты увеличивают отклик рецептора, обратные агонисты уменьшают его, а антагонисты блокируют действие рецептора.

Ферментативный ингибитор — вещество, замедляющее протекание ферментативной реакции. Различают обратимые и необратимые ингибиторы.

Антагонист в биохимии и фармакологии — подтип лигандов к клеточным рецепторам. Лиганд, обладающий свойствами антагониста рецепторов — это такой лиганд, который блокирует, снижает или предотвращает вызываемые связыванием агониста с рецептором физиологические эффекты. Сам же он при этом не обязан производить какие-либо физиологические эффекты вследствие своего связывания с рецептором. Таким образом, антагонисты рецепторов имеют сродство (аффинность) к данному конкретному типу рецепторов, но, исходя из строгого определения, не имеют собственной внутренней агонистической активности по отношению к этому рецептору, и их связывание лишь нарушает взаимодействие [конкурентных] полных или частичных агонистов с рецептором и предотвращает или ингибирует их функцию и их физиологические эффекты. В равной степени антагонисты рецепторов предотвращают и воздействие на рецептор обратных агонистов. Антагонисты рецепторов опосредуют свои эффекты благодаря связыванию либо с активным сайтом рецептора, тем же самым, с которым связывается и физиологический эндогенный агонист, либо с аллостерическими сайтами, или же они могут взаимодействовать с рецептором в уникальных участках связывания, которые не являются нормальными участками связывания эндогенных веществ для данного рецептора и не принимают в норме участия в физиологической регуляции активности данного рецептора.

ГАМКC-рецептор — ионотропный рецептор γ-аминомасляной кислоты, связанный с хлоридным каналом. При активации рецептора молекулами ГАМК начинается транспорт ионов хлора во внутриклеточное пространство, который приводит к ингибированию нервного импульса.

В биохимии и фармакологии лиганд — это химическое соединение, которое образует комплекс с той или иной биомолекулой и производит, вследствие такого связывания, те или иные биохимические, физиологические или фармакологические эффекты. В случае связывания лиганда с белком лиганд обычно является малой сигнальной молекулой, связывающейся со специфическим участком связывания на белке-мишени. В случае связывания лиганда с ДНК лиганд обычно также является малой молекулой или ионом, или белком который связывается с двойной спиралью ДНК.
Сродство́ — способность одного объекта (тела) связываться с другим объектом и образовывать таким образом новый комплексный объект. Понятие сродство применяется как к физическим объектам, так и к сложным молекулам, в том числе и к белкам. Коэффициентом, характеризующим силу сродства, является энергия связи, выделяющаяся или затрачиваемая при возникновении связи объектов, измеряемая в килоджоулях (кДж) или электронвольтах (эВ).

Никотиновый ацетилхолиновый рецептор (н-холинорецептор, nACh-receptor) — подвид ацетилхолиновых рецепторов, который обеспечивает передачу нервного импульса через синапсы и активируется ацетилхолином, а также никотином. Этот рецептор вместе с ГАМКA-, ГАМКC- глициновым и 5-HT3-рецепторами образует семейство лиганд-зависимых ионных каналов с цистеиновой петлёй.

EC50 или полумаксимальная эффективная концентрация, означает концентрацию лиганда, которая вызывает эффект, равный половине максимального возможного для данного лиганда после истечения некоторого промежутка времени. Данная величина обычно используется в качестве характеристики мощности действия лиганда.

Внутренняя агонистическая активность или «внутренняя активность», «агонистическая активность», или «рецепторная эффективность», «эффективность по отношению к рецептору», коротко называемая «эффективность» в контексте фармакологии — термин, которым обозначают меру относительной способности комплекса лиганда с рецептором производить максимальный физиологический ответ.
Конкурентные антагонисты — подтип лигандов-антагонистов рецепторов, которые обратимо связываются с рецепторами в том же самом участке связывания, что и физиологический эндогенный лиганд-агонист этого рецептора, но не вызывают активации рецептора. Физиологические агонисты и конкурентные антагонисты в этом случае «конкурируют» за связывание с одним и тем же участком связывания рецепторов. После того, как конкурентный антагонист свяжется с участком связывания рецептора, он предотвращает связывание с ним же агониста. Однако конкурентный антагонист не может ни «вытеснить» уже связавшийся с рецептором агонист из связи, ни предотвратить воздействие уже связавшегося агониста на клетку. Конечный результат конкуренции агонистов и антагонистов — и таким образом конечный уровень активности рецепторной системы — определяется соотношением молярных концентраций, относительным сродством к рецепторам и соотношением относительной внутренней агонистической активности агонистов и антагонистов. Поскольку высокие концентрации конкурентного антагониста повышают процент занятости рецепторов этим антагонистом, для достижения того же самого процента занятости рецепторов агонистом в этих условиях — и получения того же самого физиологического ответа — потребуются более высокие концентрации агониста, и наоборот — при более высоких концентрациях агониста требуется больше конкурентного антагониста для функциональной «блокады» рецепторов. В функциональных исследованиях конкурентные антагонисты вызывают параллельный сдвиг кривой «доза агониста-эффект» вправо, без изменения максимальной величины физиологического ответа.
Термин «неконкурентный антагонизм» используется для описания двух разных феноменов: в одном случае неконкурентный антагонист связывается с ортостерическим участком связывания лигандов на рецепторе, а в другом случае он связывается с аллостерическим участком связывания лигандов на рецепторе. И хотя механизм антагонистического действия различен в обоих случаях, они оба называются «неконкурентным антагонизмом», поскольку конечный результат воздействия антагониста в обоих случаях функционально очень похож. В отличие от конкурентных антагонистов, которые конкурируют с агонистами за занятость рецепторов и сдвигают кривую доза-эффект вправо, влияя на количество агониста, необходимое для получения максимального физиологического ответа, но никак не влияют на саму величину максимального физиологического ответа, неконкурентные антагонисты уменьшают величину максимального физиологического ответа, который может быть получен при любом сколь угодно большом количестве агониста. Это свойство и даёт им название «неконкурентные антагонисты», поскольку их эффект не может быть «уничтожен», обнулен или скомпенсирован увеличением количества агониста, сколь бы велико это увеличение ни было. В биологических системах, предназначенных для изучения влияния тех или иных антагонистов на рецепторы, неконкурентные антагонисты вызывают уменьшение «плато», и, в некоторых случаях, также сдвиг кривой вправо. Сдвиг кривой вправо происходит вследствие наличия во многих биологических рецепторных системах так называемого «рецепторного резерва», и ингибирование агонистического ответа под влиянием неконкурентного антагониста происходит только тогда, когда истощится (израсходуется) этот рецепторный резерв.

В фармакологии молярная активность — это числовая мера активности химического вещества или лекарства, выражаемая в терминах количества (дозы) вещества или его концентрации, требуемой для получения желаемого клинического или экспериментально-фармакологического эффекта определённой заданной интенсивности. Согласно этому определению, высокоактивное вещество, такое, как, например, бупренорфин, алпразолам, рисперидон — вызывает более сильный клинический и биохимический/физиологический ответ в меньших концентрациях, в то время как менее активное вещество, такое, например, как трамадол, оксазепам, хлорпромазин, оказывает гораздо меньший эффект в сопоставимых концентрациях, и поэтому требует для достижения того же эффекта применения более высоких доз или концентраций. Молярная активность того или иного вещества, являющегося лигандом тех или иных клеточных рецепторов пропорциональна как его константе диссоциации, так и его внутренней агонистической активности. Аналогичным образом, молярная активность того или иного вещества, являющегося ингибитором того или иного фермента или другого белка, зависит как от степени сродства этого вещества к ферменту или белку, так и от эффективности ингибирования.
В фармакологии, физиологии и биохимии, термин эндогенный агонист по отношению к определённому подтипу клеточных рецепторов обозначает химическое соединение, которое отвечает следующим трём условиям:
- производится в самом организме или ткани в нормальных физиологических условиях, то есть является эндогенным веществом — например, нейромедиатором, цитокином или гормоном;
- является лигандом для данного подтипа рецепторов, то есть обладает способностью связываться с ортостерическим сайтом связывания данного подтипа рецепторов;
- обладает способностью после связывания активировать этот рецептор, изменяя его пространственную конфигурацию, что приводит к вызыванию соответствующего биохимического или физиологического ответа.

В биохимии аллостерическая регуляция — это регуляция фермента путем связывания эффекторной молекулы в сайте, отличном от активного сайта фермента.

Иодорезинифератоксин (I-RTX) является сильным конкурентным антагонистом временного рецепторного потенциального ваниллоидного 1 (TRPV1) рецептора. I-RTX является производным резинифератоксина (RTX).