Топологи́ческое простра́нство — множество, для элементов которого определено, какие из них близки друг к другу. Является центральным понятием общей топологии.
В этом глоссарии приведены определения основных терминов, используемых в общей топологии. Курсивом выделены ссылки внутри глоссария.
Ба́нахово пространство — нормированное векторное пространство, полное по метрике, порождённой нормой. Основной объект изучения функционального анализа.
Компа́ктное простра́нство — определённый тип топологических пространств, обобщающий свойства ограниченности и замкнутости в евклидовых пространствах на произвольные топологические пространства.
Категория Бэра — один из способов различать «большие» и «маленькие» множества. Подмножество топологического пространства может быть первой или второй категории Бэра.
Выпуклое множество в аффинном или векторном пространстве — множество, в котором все точки отрезка, образуемого любыми двумя точками данного множества, также принадлежат данному множеству.
Ограниченность в математике — свойство множеств, указывающее на конечность размера в контексте, определяемом категорией пространства.
Слабая сходимость в функциональном анализе — вид сходимости в топологических векторных пространствах.
Вполне регулярное пространство или тихоновское пространство — топологическое пространство, удовлетворяющее аксиомам отделимости T1 и T3½, то есть такое топологическое пространство, в котором все одноточечные множества замкнуты и для любого замкнутого множества и точки вне его существует непрерывная числовая функция, равная единице на множестве и нулю в точке (А. Н. Тихонов, 1930).
Спектр кольца в математике — множество всех простых идеалов данного коммутативного кольца. Обычно спектр снабжается топологией Зарисского и пучком коммутативных колец, что делает его локально окольцованным пространством. Спектр кольца обозначается .
Монтелевское пространство — понятие функционального анализа и смежных областей математики, названное в честь Поля Монтеля. Монтелевским пространством называется топологическое векторное пространство, в котором справедлив аналог теоремы Монтеля. Более точно, пространство Монтеля — это бочечное топологическое векторное пространство, в котором каждое замкнутое ограниченное множество является компактным. Последнее свойство называется свойством Гейне-Бореля.
Выпуклый конус в линейной алгебре — подмножество векторного пространства над упорядоченным полем, которое замкнуто относительно линейных комбинаций с положительными коэффициентами.
k-пространство — топологическое пространство, в котором замкнуты все множества, пересечение которых с каждым компактным подмножеством этого пространства замкнуто. Часто к этому добавляют требование хаусдорфовости пространства.
Мера Радона — мера на сигма-алгебре борелевских множеств на хаусдорфовом топологическом пространстве X, которая является локально конечной и внутреннее регулярной.
Пространство модулей в алгебраической геометрии — это геометрическое пространство, точки которого соответствуют некоторому классу алгебро-геометрических объектов , факторизованному по некоторому отношению эквивалентности . Такие пространства часто возникают как решения классификационных задач: если множество интересующих нас объектов, может быть снабжено структурой геометрического пространства, то можно параметризовать данные объекты, введя координаты на этом пространстве. В данном контексте термин «модули» синонимичен термину «параметры»: пространства модулей первоначально понимались как пространства параметров, а не пространства объектов.
Когерентные пучки — класс пучков, тесно связанных с геометрическими свойствами пространства-носителя. В определении когерентного пучка используется пучок колец, который хранит эту геометрическую информацию.
Крайняя точка выпуклого множества K в вещественном векторном пространстве — точка, не являющаяся серединой отрезка в K.