
В математике барице́нтр, или геометри́ческий центр, двумерной фигуры — это среднее арифметическое положений всех точек данной фигуры. Определение распространяется на любой объект в n-мерном пространстве. Радиус-вектор барицентра в трёхмерном случае вычисляется как
,
Численное интегрирование — вычисление значения определённого интеграла. Под численным интегрированием понимают набор численных методов для нахождения значения определённого интеграла.
Методы Мо́нте-Ка́рло (ММК) — группа численных методов для изучения случайных процессов. Суть метода заключается в следующем: процесс описывается математической моделью с использованием генератора случайных величин, модель многократно обсчитывается, на основе полученных данных вычисляются вероятностные характеристики рассматриваемого процесса. Например, чтобы узнать методом Монте-Карло, какое в среднем будет расстояние между двумя случайными точками в круге, нужно взять координаты большого числа случайных пар точек в границах заданной окружности, для каждой пары вычислить расстояние, а потом для них посчитать среднее арифметическое.

Случайное блуждание — математический объект, известный как стохастический или случайный процесс, который описывает путь, состоящий из последовательности случайных шагов в каком-нибудь математическом пространстве.

Метод наименьших квадратов (МНК) — математический метод, применяемый для решения различных задач, основанный на минимизации суммы квадратов отклонений некоторых функций от искомых переменных. Он может использоваться для «решения» переопределенных систем уравнений, для поиска решения в случае обычных нелинейных систем уравнений, для аппроксимации точечных значений некоторой функции. МНК является одним из базовых методов регрессионного анализа для оценки неизвестных параметров регрессионных моделей по выборочным данным.
Метод обратного распространения ошибки — метод вычисления градиента, который используется при обновлении весов многослойного перцептрона. Впервые метод был описан в 1974 г. А. И. Галушкиным, а также независимо и одновременно Полом Дж. Вербосом. Далее существенно развит в 1986 г. Дэвидом И. Румельхартом, Дж. Е. Хинтоном и Рональдом Дж. Вильямсом и независимо и одновременно С.И. Барцевым и В.А. Охониным. Это итеративный градиентный алгоритм, который используется с целью минимизации ошибки работы многослойного перцептрона и получения желаемого выхода.
Метод главных компонент — один из основных способов уменьшить размерность данных, потеряв наименьшее количество информации. Изобретён Карлом Пирсоном в 1901 году. Применяется во многих областях, в том числе в эконометрике, биоинформатике, обработке изображений, для сжатия данных, в общественных науках.
Метод k-средних — наиболее популярный метод кластеризации. Был изобретён в 1950-х годах математиком Гуго Штейнгаузом и почти одновременно Стюартом Ллойдом. Особую популярность приобрёл после работы Маккуина.

Формулировка квантовой механики через интеграл по траекториям — описание квантовой теории, которое обобщает принцип действия классической механики. Оно замещает классическое определение одиночной, уникальной траектории системы полной суммой по бесконечному множеству всевозможных траекторий для расчёта квантовой амплитуды. Методологически формулировка через интеграл по траекториям близка к принципу Гюйгенса — Френеля из классической теории волн.
Ранцевая криптосистема Меркла — Хеллмана, основанная на «задаче о рюкзаке», была разработана Ральфом Мерклом и Мартином Хеллманом в 1978 году. Это была одна из первых криптосистем с открытым ключом, но она оказалась криптографически нестойкой и, как следствие, не приобрела популярности.
В вычислительной математике алгоритм Кэхэна — это алгоритм вычисления суммы последовательности чисел c плавающей запятой, который значительно уменьшает вычислительную погрешность по сравнению с наивным подходом. Уменьшение погрешности достигается введением дополнительной переменной для хранения нарастающей суммы погрешностей.
Алгоритм Diamond-Square — метод генерации карт высот для компьютерной графики.
Геометрический центр дискретного множества точек евклидова пространства — это точка, в которой минимизируется сумма расстояний до точек множества. Геометрический центр обобщает медиану в математической статистике, которая минимизирует расстояния в одномерной выборке данных. Таким образом, геометрический центр отражает центральную тенденцию в пространствах высокой размерности. Понятие известно также по названиям 1-медиана, пространственная медиана, или точка Торричелли.
Онлайновое машинное обучение — это метод машинного обучения, в котором данные становятся доступными в последовательном порядке и используются для обновления лучшего предсказания для последующих данных, выполняемого на каждом шаге обучения. Метод противоположен пакетной технике обучения, в которой лучшее предсказание генерируется за один раз, исходя из полного тренировочного набора данных. Онлайновое обучение является общей техникой, используемой в областях машинного обучения, когда невозможна тренировка по всему набору данных, например, когда возникает необходимость в алгоритмах, работающих с внешней памятью. Метод используется также в ситуациях, когда алгоритму приходится динамически приспосабливать новые схемы в данных или когда сами данные образуются как функция от времени, например, при предсказании цен на фондовом рынке. Алгоритмы онлайнового обучения могут быть склонны к катастрофическим помехам, проблеме, которая может быть решена с помощью подхода пошагового обучения.
Сбалансированное итеративное сокращение и кластеризация с помощью иерархий — это алгоритм интеллектуального анализа данных без учителя, используемый для осуществления иерархической кластеризации на наборах данных большого размера. Преимуществом BIRCH является возможность метода динамически кластеризовать по мере поступления многомерных метрических точек данных в попытке получить кластеризацию лучшего качества для имеющегося набора ресурсов. В большинстве случаев алгоритм BIRCH требует одного прохода по базе данных.
Основанная на плотности пространственная кластеризация для приложений с шумами — это алгоритм кластеризации данных, который предложили Маритин Эстер, Ганс-Петер Кригель, Ёрг Сандер и Сяовэй Су в 1996. Это алгоритм кластеризации, основанной на плотности — если дан набор точек в некотором пространстве, алгоритм группирует вместе точки, которые тесно расположены, помечая как выбросы точки, которые находятся одиноко в областях с малой плотностью . DBSCAN является одним из наиболее часто используемых алгоритмов кластеризации, и наиболее часто упоминается в научной литературе.
CURE является эффективным алгоритмом кластерного анализа для больших баз данных. По сравнению с методом k-средних алгоритм более устойчив к выбросам и способен выявить кластеры, не имеющие сферической формы и с большим разбросом размеров.
Сдвиг среднего значения — это непараметрическая техника анализа пространства признаков для определения местоположения максимума плотности вероятности, так называемый алгоритм поиска моды. Область применения техники — кластерный анализ в компьютерном зрении и обработке изображений.