Логика первого порядка — формальное исчисление, допускающее высказывания относительно переменных, фиксированных функций и предикатов. Расширяет логику высказываний.
Математи́ческая ло́гика — раздел математики, изучающий математические обозначения, формальные системы, доказуемость математических суждений, природу математического доказательства в целом, вычислимость и прочие аспекты оснований математики.
Деду́кция — вывод по правилам логики; цепь умозаключений (рассуждение), звенья которой (высказывания) связаны отношением логического следования. В дедукции вывод строится от общих положений к частным случаям. Началом (посылками) дедукции являются аксиомы, постулаты или просто гипотезы, имеющие характер общих утверждений (общее), а концом — следствия из посылок, теоремы (частное). Если посылки дедукции истинны, то истинны и её следствия. Дедукция — основное средство доказательства.
Логика высказываний, пропозициональная логика или исчисление высказываний, также логика нулевого порядка — это раздел символической логики, изучающий сложные высказывания, образованные из простых, и их взаимоотношения. В отличие от логики предикатов, пропозициональная логика не рассматривает внутреннюю структуру простых высказываний, она лишь учитывает, с помощью каких союзов и в каком порядке простые высказывания сочленяются в сложные.
Мода́льная ло́гика — логика, в которой кроме стандартных логических связок, переменных и предикатов есть модальности.
Интуициони́стская ло́гика — формальная система, отражающая некоторые способы рассуждений, приемлемые с точки зрения интуиционизма. Предложена А. Гейтингом в 1930 году.
Пра́вило резолю́ций — это правило вывода, восходящее к методу доказательства теорем через поиск противоречий; используется в логике высказываний и логике первого порядка. Правило резолюций, применяемое последовательно для списка резольвент, позволяет ответить на вопрос, существует ли в исходном множестве логических выражений противоречие. Правило резолюций предложено в 1930 году в докторской диссертации Жака Эрбрана для доказательства теорем в формальных системах первого порядка. Правило разработано Джоном Аланом Робинсоном в 1965 году.
Необходимое условие и достаточное условие — виды условий, логически связанных с некоторым суждением. Различие этих условий используется в логике и математике для обозначения видов связи суждений.
Зако́н контрапози́ции — закон классической логики, утверждающий, что в том случае, если некая посылка A влечёт некое следствие B, то отрицание этого следствия влечёт отрицание этой посылки. Суть его заключается в простом умозаключении: если из истинности некоторого утверждения следует истинность другого, то в случае ложности второго утверждения первое никак не может быть истинным, поскольку иначе было бы истинным и второе.
Доведение до абсурда, приведение к нелепости, или апагогия — логический приём, которым доказывается несостоятельность какого-нибудь мнения таким образом, что или в нём самом, или же в вытекающих из него следствиях обнаруживается противоречие.
Тавтологией в логике называется тождественно истинное высказывание, инвариантное относительно значений своих компонентов.
Силлогистика — теория логического вывода, исследующая умозаключения, состоящие из категорических высказываний (суждений).
Правило вывода — эффективная процедура для проверки того, что одна заданная формула в рассматриваемой теории непосредственно за один шаг выводится из других заданных формул.
Двухчастная инвенция Льюиса Кэрролла — логический парадокс в форме диалога, описанный Кэрроллом в 1895 году.
Сле́дствие — используемое в философии и логике в учении о суждениях, заключениях и доказательствах понятие, означающее следствие, вывод в отношении к причине — антецеденту.
S5 — одна из пяти систем модальной логики, предложенных Льюисом и Лэнгфордом в книге «Символическая логика». Является нормальной модальной логикой и одной из старейших систем модальной логики. Будучи простейшей модельной логикой, образуется формулами логики высказываний, тавтологиями, аппаратом вывода с подстановками и modus ponens. Синтаксис при этом дополнен модальным оператором необходимости и двойственным ему оператором возможности .
Натуральный вывод — тип логических исчислений, использующий для доказательства утверждений правила вывода, близкие к обычным содержательным методам рассуждений.
Индикативное условие — условное предложение естественного языка, придаточная часть которого имеет одну из форм синтаксического индикатива и содержит информацию о том, что ситуация является потенциальной в прошедшем, настоящем и будущем временах, а грамматическая форма ограничивает их обсуждением того, что может быть истиной. Индикативные (указательные) условные предложения обычно противопоставляются контрфактическим условиям, которые имеют дополнительное грамматическое оформление для рассуждения о ситуациях, которые уже не являются вероятными.
Утверждение по следствию — логическая ошибка, заключающаяся в том, что из истинного условного высказывания некорректно вытекает его обращеие, хотя это высказывание может не соответствовать действительности. Такая ситуация возникает, когда у консеквента (следствия) есть другие возможные антецеденты.
Паранепротиворечивая логика — стремление формальной системы к решению проблемы противоречий, с помощью метода дифференциации. Представляет собой область, занимающуюся изучением и развитием «устойчивым к противоречиям» систем, исключающих принцип взрыва.