
О́птика — раздел физики, изучающий поведение и свойства света, в том числе его взаимодействие с веществом и создание инструментов, которые его используют или детектируют. Оптика обычно описывает поведение видимого, ультрафиолетового и инфракрасного излучения. Поскольку свет представляет собой электромагнитную волну, другие формы электромагнитного излучения, такие как рентгеновские лучи, микроволны и радиоволны, обладают аналогичными свойствами.

Свет — электромагнитное излучение, воспринимаемое человеческим глазом. В качестве коротковолновой границы спектрального диапазона, занимаемого светом, принят участок с длинами волн в вакууме 380−400 нм, а в качестве длинноволновой границы — участок 760−780 нм.

Эффе́кт Вави́лова — Черенко́ва, эффе́кт Черенко́ва, излуче́ние Вави́лова — Черенко́ва, черенко́вское излуче́ние — свечение, вызываемое в прозрачной среде заряженной частицей, движущейся со скоростью, превышающей фазовую скорость распространения света в этой среде.
Эффе́кт Ко́мптона — упругое рассеяние фотона заряженной частицей, обычно электроном, названное в честь первооткрывателя Артура Холли Комптона. Если рассеяние приводит к уменьшению энергии, поскольку часть энергии фотона передаётся отражающемуся электрону, что соответствует увеличению длины волны фотона, то этот процесс называется эффектом Комптона. Обратное комптоновское рассеяние происходит, когда заряженная частица передаёт фотону часть своей энергии, что соответствует уменьшению длины волны кванта света.

Рентге́новское излуче́ние — электромагнитные волны, энергия фотонов которых лежит на шкале электромагнитных волн между ультрафиолетовым излучением и гамма-излучением (от ~10 эВ до нескольких МэВ), что соответствует длинам волн от ~103 до ~10−2 Å (от ~102 до ~10−3 нм).

Спектро́метр — оптический прибор, используемый в спектроскопических исследованиях для накопления спектра, его количественной обработки и последующего анализа с помощью различных аналитических методов. Анализируемый спектр получается путём регистрации флуоресценции после воздействия на исследуемое вещество каким-либо излучением. Обычно измеряемыми величинами являются интенсивность и энергия излучения, но могут регистрироваться и другие характеристики, например, поляризационное состояние. Термин «спектрометр» применяется к приборам, работающим в широком диапазоне длин волн: от гамма до инфракрасного диапазона.

Преломле́ние (рефра́кция) — изменение направления луча (волны), возникающее на границе двух сред, через которые этот луч проходит, или в одной среде, но с меняющимися свойствами, в которой скорость распространения волны неодинакова.
Давление электромагнитного излучения, давление света — давление, которое оказывает световое излучение, падающее на поверхность тела.

Инфракра́сная спектроскопи́я — раздел спектроскопии, изучающий взаимодействие инфракрасного излучения с веществами.
Сцинтилля́торы — вещества, проявляющие сцинтилляцию, то есть излучающие свет при поглощении ионизирующего излучения. Как правило, излучаемое количество фотонов для данного типа излучения приближённо пропорционально поглощённой энергии, что позволяет получать энергетические спектры излучения.
Лазеры сверхкоротких импульсов, лазеры УКИ (ПКИ), фемтосекундные лазеры — оптические квантовые генераторы, способные генерировать импульсы лазерного излучения, которые содержат достаточно малое число колебаний оптического поля.

Вну́треннее отраже́ние — явление отражения электромагнитных или звуковых волн от границы раздела двух сред при условии, что волна падает из среды, где скорость её распространения меньше.

Инфракрасный спектрометр — прибор для регистрации инфракрасных спектров поглощения, пропускания или отражения веществ.
Ионизацио́нный калори́метр в физике элементарных частиц и ядерной физике — прибор, который измеряет энергию частиц. Большинство частиц, попадающих в калориметр, при взаимодействии с его веществом инициируют возникновение вторичных частиц, передавая им часть своей энергии. Вторичные частицы образуют ливень, который поглощается в объёме калориметра, и его энергия измеряется с помощью полупроводниковых, ионизационных детекторов, пропорциональных камер, детекторов черенковского излучения или сцинтилляционных детекторов. Энергия может быть измерена полностью либо частично, с последующим пересчётом поглощённой энергии в полную энергию первичной частицы. Как правило, калориметры имеют поперечную сегментацию для получения информации о направлении движения частицы и выделившейся энергии, и продольную сегментацию для получения информации о форме ливня и, исходя из этого, — о типе частицы. Проектирование калориметров — активная область исследований в физике элементарных частиц, как при исследовании космических лучей, так и для изучения частиц в ускорителях.
Рентге́новская о́птика — отрасль прикладной оптики, изучающая процессы распространения рентгеновских лучей в средах, а также разрабатывающая элементы для рентгеновских приборов. Рентгеновская оптика, в отличие от обычной, рассматривает отражение и преломление электромагнитных волн в диапазоне длин волн рентгеновского 10−4 до 100 Å и гамма-излучений < 10−4 Å.
Детектор частиц, детектор элементарных частиц, детектор ионизирующего излучения в экспериментальной физике элементарных частиц — устройство, предназначенное для обнаружения и измерения параметров атомных и субатомных частиц высокой энергии, таких как космические лучи или частиц, рождающихся при ядерных распадах или в ускорителях.

Черенковский детектор, или детектоp черенковского излучения, — детектор элементарных частиц, использующий детектирование черенковского излучения, что позволяет косвенным образом определить массы частиц, или отделить более лёгкие частицы от более тяжёлых.

LHCb — самый маленький из четырёх основных детекторов на коллайдере LHC в европейской организации ядерных исследований CERN в городе Женева (Швейцария). Эксперимент проводится для исследования асимметрии материи и антиматерии во взаимодействиях b-кварков.
Метод дисперсионной рентгеновской спектроскопии по длине волны (ДРСДВ) — аналитическая методика элементного анализа твёрдого вещества, базирующаяся на анализе максимумов по их расположению и интенсивности её рентгеновского спектра, вариант рентгеноспектрального анализа. С помощью ДРСДВ-методики можно количественно и качественно определить элементы в исследуемом материале начиная с атомного номера 4 — (Бериллий). Нижняя граница определения наличия элемента при этом составляет 0.01 весового процента, что в абсолютных числах составляет 10−14 до 10−15 грамма.
Гамма-телескоп — телескоп, предназначенный для наблюдения удалённых объектов в спектре гамма-излучения. Гамма-телескопы используются для поиска и исследования дискретных источников гамма-излучения, измерения энергетических спектров галактического и внегалактического диффузного гамма-излучения, исследования гамма-всплесков и природы тёмной материи. Различают космические гамма-телескопы, детектирующие гамма-кванты непосредственно, и наземные черенковские телескопы, устанавливающие параметры гамма-квантов путём наблюдения за возмущениями, которые вызывают гамма-кванты в атмосфере.