Шифрова́ние — обратимое преобразование информации в целях сокрытия от неавторизованных лиц с предоставлением в это же время авторизованным пользователям доступа к ней. Главным образом, шифрование служит для соблюдения конфиденциальности передаваемой информации. Важной особенностью любого алгоритма шифрования является использование ключа, который утверждает выбор конкретного преобразования из совокупности возможных для данного алгоритма.
Реку́рсия — определение, описание, изображение какого-либо объекта или процесса внутри самого этого объекта или процесса, то есть ситуация, когда объект является частью самого себя. Термин «рекурсия» используется в различных специальных областях знаний — от лингвистики до логики, но наиболее широкое применение находит в математике и информатике.
Вопрос определения того, является ли натуральное число простым, известен как проблема простоты.
Задача коммивояжёра — одна из самых известных задач комбинаторной оптимизации, заключающаяся в поиске самого выгодного маршрута, проходящего через указанные города хотя бы по одному разу с последующим возвратом в исходный город. В условиях задачи указываются критерий выгодности маршрута и соответствующие матрицы расстояний, стоимости и тому подобного. Как правило, указывается, что маршрут должен проходить через каждый город только один раз — в таком случае выбор осуществляется среди гамильтоновых циклов. Существует несколько частных случаев общей постановки задачи, в частности, геометрическая задача коммивояжёра, метрическая задача коммивояжёра, симметричная и асимметричная задачи коммивояжёра. Также существует обобщение задачи, так называемая обобщённая задача коммивояжёра.
Томогра́фия — получение послойного изображения внутренней структуры объекта.
Квантовый алгоритм — алгоритм, предназначенный для выполнения на квантовом компьютере.
Оптимизация — модификация системы для улучшения её эффективности. Система может быть одиночной компьютерной программой, цифровым устройством, набором компьютеров или даже целой сетью.
Задача о рюкзаке — NP-полная задача комбинаторной оптимизации. Своё название получила от конечной цели: уложить как можно большее число ценных вещей в рюкзак при условии, что вместимость рюкзака ограничена. С различными вариациями задачи о рюкзаке можно столкнуться в экономике, прикладной математике, криптографии и логистике.
Раскраска графа — теоретико-графовая конструкция, частный случай разметки графа. При раскраске элементам графа ставятся в соответствие метки с учётом определённых ограничений; эти метки традиционно называются «цветами». В простейшем случае такой способ окраски вершин графа, при котором любым двум смежным вершинам соответствуют разные цвета, называется раскраской вершин. Аналогично раскраска рёбер присваивает цвет каждому ребру так, чтобы любые два смежных ребра имели разные цвета. Наконец, раскраска областей планарного графа назначает цвет каждой области, так, что каждые две области, имеющие общую границу, не могут иметь одинаковый цвет.
Гамильтонов граф — граф, содержащий гамильтонов цикл. При этом гамильтоновым циклом является такой цикл, который проходит через каждую вершину данного графа ровно по одному разу; то есть простой цикл, в который входят все вершины графа.
Круговая система — в спортивных соревнованиях система розыгрыша, при которой каждый участник турнира играет с каждым в ходе тура или раунда. Популярна в игровых видах спорта, особенно в национальных чемпионатах и при отборочных турнирах к чемпионатам мира или континентов. Считается наиболее справедливой, но при этом требует наибольшего числа игр для распределения мест, по сравнению с другими турнирными системами.
Зада́ча о восьми́ фе́рзя́х — широко известная комбинаторная задача по расстановке фигур на шахматной доске. Исходная формулировка: «Расставить на стандартной 64-клеточной шахматной доске 8 ферзей так, чтобы ни один из них не находился под боем другого». Подразумевается, что ферзь бьёт все клетки, расположенные по вертикалям, горизонталям и обеим диагоналям.
Компромисс времени и памяти — компромиссный подход к решению ряда задач в информатике, при котором используется обратное соотношение требуемого объёма памяти и скорости выполнения программы: время вычислений может быть увеличено за счёт уменьшения используемой памяти или, наоборот, снижено за счёт увеличения объёма используемой памяти.
Алгоритм Гельфонда — Шенкса — в теории групп детерминированный алгоритм дискретного логарифмирования в мульпликативной группе кольца вычетов по модулю простого числа. Был предложен советским математиком Александром Гельфондом в 1962 году и Дэниелом Шенксом в 1972 году.
CubeHash — это параметризуемое семейство криптографических хеш-функций CubeHashr/b. CubeHash8/1 была предложена Дэниелом Бернштейном в качестве нового стандарта для SHA-3 в конкурсе хеш-функций, проводимым Национальным институтом стандартов и технологий (НИСТ). Вначале НИСТ требовал около 200 циклов на байт. После некоторых уточнений от НИСТ автор сменил параметры на CubeHash16/32, которая примерно в 16 раз быстрее, чем CubeHash8/1 и легко догоняет SHA-256 и SHA-512 на различных платформах.
SWIFFT — набор криптографических хеш-функций с доказанной стойкостью. Они основываются на быстром преобразовании Фурье и используют алгоритм LLL-редуцированных базисов. Криптографическая стойкость функций SWIFFT математически доказана при использовании рекомендуемых параметров. Поиск коллизий в SWIFFT в худшем случае требует не меньше временных затрат, чем нахождение коротких векторов в циклических/идеальных решётках. Практическое применение SWIFFT будет ценно именно в тех случаях, когда стойкость к коллизиям особенно важна. Например, цифровые подписи, которые должны оставаться надёжными длительное время.
Завистливое распределение объектов — это задача справедливого распределения объектов, в которой критерием справедливости служит отсутствие зависти в получившемся распределении — каждый агент должен получить набор объектов, ценность которых не меньше долей, полученных другими агентами.
Максиминимизация долей — это критерий справедливого распределения объектов. Если дано множество объектов с различными значениями, 1-из-n maximin-доля означает наибольшее значение, которое может быть получено путём разбиения объектов на n частей и выбора части с минимальным значением.