
Люминесце́нция — нетепловое свечение вещества, происходящее после поглощения им энергии возбуждения. Впервые люминесценция была описана в XVIII веке.

Фосфоресценция — это особый тип фотолюминесценции. В отличие от флуоресцентного, фосфоресцентное вещество излучает поглощённую энергию не сразу. Большее время реэмиссии связано с «запрещёнными» энергетическими переходами в квантовой механике. Поскольку такие переходы в обычных материалах наблюдаются редко, реэмиссия поглощенного излучения проходит с более низкой интенсивностью и в течение длительного времени.

Полимера́зная цепна́я реа́кция (ПЦР) — метод молекулярной биологии, позволяющий добиться значительного увеличения малых концентраций определённых фрагментов нуклеиновой кислоты в биологическом материале (пробе).
Полимеразная цепная реакция в реальном времени — лабораторный метод, основанный на методе полимеразной цепной реакции, позволяющий определять не только присутствие целевой нуклеотидной последовательности в образце, но и измерять количество её копий. Количество амплифицированной ДНК измеряется после каждого цикла амплификации с помощью флуоресцентных меток: зондов или интеркаляторов. Оценка может быть количественной и относительной.

Роджер Тсиен — американский химик китайского происхождения, профессор кафедры химии и биохимии Калифорнийского Университета в Сан-Диего. В 2008 году был удостоен Нобелевской премии по химии «за открытие и работу над зелёным флуоресцентным белком» совместно с двумя другими химиками.

Зелёный флуоресцентный белок (ЗФБ) — белок, выделенный из медузы Aequorea victoria, который флуоресцирует в зелёном диапазоне при освещении его светом от синего до ультрафиолетового диапазона. В настоящее время ген белка широко используется в качестве светящейся метки в клеточной и молекулярной биологии для изучения экспрессии клеточных белков. Разработаны модификации белка для применения в биосенсорах. Созданы цельные светящиеся животные, у которых ЗФБ внесён в геном и передаётся по наследству. Созданы также ЗФБ-содержащие вирусные векторы, позволяющие локально вводить желаемый ген в организм животного и прослеживать экспрессируемый белок. В 2008 году Осаму Симомура, Мартин Чалфи и Роджер Тсьен получили Нобелевскую премию по химии «за открытие и разработку зелёного флуоресцентного белка».

Бромистый этидий (3,8-диамино-5-этил-6-фенилфенантридиум бромид) — органическое соединение, флуоресцентный краситель с химической формулой C21H20BrN3. Применяется как интеркалирующий агент в молекулярной биологии для выявления нуклеиновых кислот, в частности, в случае электрофореза ДНК в агарозном геле.

Са́узерн-блот, Са́узерн-бло́ттинг, бло́ттинг по Са́узерну, блот Са́зерна, бло́ттинг Са́зерна, са́зерн-блот, са́зерн-бло́ттинг — метод, применяемый в молекулярной биологии для выявления определённой последовательности ДНК в образце. Он заключается в переносе разделённых электрофорезом в агарозном геле фрагментов ДНК на мембранный фильтр и последующем обнаружении в них известной последовательности из ДНК-зонда с помощью гибридизации с ним. Метод называется по имени изобретателя, английского биолога Эдвина Саузерна.
Вестерн-блоттинг — аналитический метод, используемый для определения в образце специфичных белков. На первом этапе используют электрофорез белков в полиакриламидном геле для разделения денатурированных полипептидов по длине или по трехмерной структуре белка. Далее белки переносят на нитроцеллюлозную или PVDF-мембрану, затем детектируют с использованием антител, специфичных к заданному белку.

Иммунофлуоресцентный анализ — набор иммунологических методов для качественного и количественного определения поверхностных и внутриклеточных антигенов в образцах клеточных суспензий, образцов крови, костного мозга, альвеолярных смывов, тонких тканевых срезов. Метод позволяет детально анализировать биологические образцы на присутствие определённых антигенных детерминант, характерных для определённых возбудителей или заболеваний, проводить количественную оценку как поверхностных, так и внутриклеточных белков и рецепторов. Исследование и оценка может выполняться вручную при помощи флюоресцентного микроскопа или автоматизировано с использованием проточного цитометра или микрочипового цитометра. Возможно применение конфокального микроскопа и роботизированного флюоресцентного микроскопа в сочетании с программной системой обработки изображений. Имеющиеся в настоящее время автоматизированные технологии позволяют анализировать в одном образце примерно 50 различных антигенов с использованием набора различных флюоресцентных маркеров в формате высокоинформативной микроскопии и цитометрии и примерно вдвое меньшем максимальным набором антигенов с использованием современной проточной цитометрии или конфокальной микроскопии. Основными практическими приложениями являются онкология, микробиология, клеточная биология, генетика, фармакология и др.

Coomassie Brilliant Blue — название двух близких трифенилметановых красителей, разработанных для текстильной индустрии, но в настоящее время широко используемых в аналитической биохимии для окраски белков. Coomassie Brilliant Blue G-250 отличается от R-250 наличием двух метильных групп. Название «Coomassie» — зарегистрированный товарный знак Imperial Chemical Industries.

Флуоресценция нашла широкое применение в различных прикладных биологических и биомедицинских исследованиях. Это физическое явление, суть которого заключается в кратковременном поглощении кванта света флюорофором с последующей быстрой эмиссией другого кванта, который имеет свойства, отличные от исходного. Много направлений в биофизике, молекулярной и клеточной биологии возникли и развиваются именно благодаря внедрению новых методов, базирующихся на флуоресценции. Стоит отметить несколько примеров.
Квантовый выход (Φ) излучательного процесса — величина, равная отношению количества раз, когда конкретное событие происходит, к количеству поглощенных квантов возбуждающего излучения.

SYBR Green I (SG) — асимметричный цианиновый краситель, используемый в молекулярной биологии для окрашивания нуклеиновых кислот. Семейство красителей SYBR производится компанией Molecular Probes Inc., принадлежащей Thermo Fisher Scientific. SYBR Green I связывается с ДНК, полученный комплекс «ДНК-краситель» лучше всего поглощает синий свет с длиной волны 497 нм и излучает зелёный свет. Краситель предпочтительно связывается с двухцепочечной ДНК, но окрашивает одноцепочечную (ss) ДНК с меньшей эффективностью. SYBR Green также может окрашивать РНК с меньшей эффективностью, чем ssДНК.

DAPI, или 4',6-диамидино-2-фенилиндол, представляет собой флуоресцентный краситель, который прочно связывается с богатыми аденином и тимином областями ДНК. Он широко используется в флуоресцентной микроскопии. Поскольку DAPI может проходить через интактную клеточную мембрану, его можно использовать для окрашивания как живых, так и фиксированных клеток, хотя он менее эффективно проходит через мембрану в живых клетках и, следовательно, служит маркером жизнеспособности мембраны.

Красители Hoechst являются частью семейства синих флуоресцентных красителей, используемых для окрашивания ДНК. Эти бис-бензимиды были первоначально разработаны компанией Hoechst AG, которая пронумеровала все свои соединения так, что краситель Hoechst 33342 является 33342-м соединением, произведенным компанией. Есть три родственных красителя Hoechst: Hoechst 33258, Hoechst 33342 и Hoechst 34580. Красители Hoechst 33258 и Hoechst 33342 являются наиболее часто используемыми и имеют схожие спектры возбуждения-испускания.

SYBR Safe — это цианиновый краситель, используемый в качестве красителя нуклеиновых кислот в молекулярной биологии. SYBR Safe — один из ряда красителей SYBR, производимых корпорацией Life Technologies. SYBR Safe связывается с ДНК. Образовавшийся комплекс ДНК-краситель поглощает синий свет и излучает зелёный свет.

SYBR Gold — асимметричный цианиновый краситель. Его можно использовать в качестве красителя для двухцепочечной ДНК, одноцепочечной ДНК и РНК. SYBR Gold является наиболее чувствительным флуоресцентным красителем из семейства красителей SYBR для обнаружения нуклеиновых кислот. Семейство красителей SYBR производится компанией Molecular Probes Inc., в настоящее время принадлежащей Thermo Fisher Scientific.

Тиазольный оранжевый представляет собой флуоресцентное соединение с пиком возбуждения при 514 нм и пиком излучения при 533 нм. Его можно возбуждать с помощью лазера с длиной волны 488 нм в паре с полосовым фильтром 530/30 нм, конфигурацию которого можно найти, например, в BD FACSCanto™ II. Тиазольный оранжевый спектрально похож на TOTO-1, TO-PRO-1, Nuclear Green, SYBR Gold и TF2.