Глико́лиз, или путь Эмбдена — Мейергофа — Парнаса — процесс окисления глюкозы, при котором из одной молекулы глюкозы образуются две молекулы пировиноградной кислоты. Гликолиз состоит из цепи последовательных ферментативных реакций и сопровождается запасанием энергии в форме АТФ и НАДH. Гликолиз является универсальным путём катаболизма глюкозы и одним из трёх путей окисления глюкозы, встречающихся в живых клетках. Реакция гликолиза в суммарном виде выглядит следующим образом:
- Глюкоза + 2НАД+ + 2АДФ + 2Pi → 2 пируват + 2НАД*H + 2Н+ + 2АТФ + 2Н2O.
Глюконеогене́з — метаболический путь, приводящий к образованию глюкозы из неуглеводных соединений. Наряду с гликогенолизом, этот путь поддерживает в крови уровень глюкозы, необходимый для работы многих тканей и органов, в первую очередь, нервной ткани и эритроцитов. Он служит важным источником глюкозы в условиях недостаточного количества гликогена, например, после длительного голодания или тяжёлой физической работы. Глюконеогенез является обязательной частью цикла Кори, кроме того, этот процесс может быть использован для превращения пирувата, образованного при дезаминировании аминокислот аланина и серина.
Ци́кл трикарбо́новых кисло́т (сокр. ЦТК, цикл Кре́бса, цитра́тный цикл, цикл лимо́нной кислоты́) — центральная часть общего пути катаболизма, циклический биохимический процесс, в ходе которого ацетильные остатки (СН3СО-) окисляются до диоксида углерода (CO2). При этом за один цикл образуется 2 молекулы CO2, 3 НАДН, 1 ФАДH2 и 1 ГТФ (или АТФ). Электроны, находящиеся на НАДН и ФАДH2, в дальнейшем переносятся на дыхательную цепь, где в ходе реакций окислительного фосфорилирования образуется АТФ.
Митохо́ндрия — двумембранная сферическая или эллипсоидная органелла диаметром обычно около 1 микрометра. Характерна для большинства эукариотических клеток, как автотрофов, так и гетеротрофов. Энергетическая станция клетки; основная функция — окисление органических соединений и использование освобождающейся при их распаде энергии для генерации электрического потенциала, синтеза АТФ и термогенеза. Эти три процесса осуществляются за счёт движения электронов по электронно-транспортной цепи белков внутренней мембраны. Количество митохондрий в клетках различных организмов существенно отличается: так, одноклеточные зелёные водоросли и трипаносомы имеют лишь одну гигантскую митохондрию, тогда как ооцит и амёба Chaos chaos содержат 300 000 и 500 000 митохондрий соответственно; у кишечных анаэробных энтамёб и некоторых других паразитических простейших митохондрии отсутствуют. В специализированных клетках органов животных содержатся сотни и даже тысячи митохондрий.
Броже́ние — биохимический процесс, основанный на окислительно-восстановительных превращениях органических соединений в анаэробных условиях. В ходе брожения происходит образование АТФ за счёт субстратного фосфорилирования. При брожении субстрат окисляется не полностью, поэтому брожение энергетически малоэффективно в сравнении с дыханием, в ходе которого АТФ образуется не за счёт субстратного фосфорилирования, а за счёт окислительного фосфорилирования. Таким образом, основной биологический смысл брожения заключается не в получении энергии, а в окислении НАДН и обеспечении гликолитических процессов окисленной формой (НАД+) этого кофермента в условиях отсутствия кислорода.
Клеточное, или тканевое дыхание — совокупность биохимических реакций, протекающих в клетках живых организмов, в ходе которых происходит окисление углеводов, липидов и аминокислот до углекислого газа и воды, а также образование энергии. Высвобожденная энергия запасается в химических связях макроэргических соединений и может быть использована по мере необходимости. Входит в группу процессов катаболизма. О физиологических процессах транспортировки к клеткам многоклеточных организмов кислорода и удалению от них углекислого газа см. статью Дыхание.
Метаногенез, биосинтез метана — процесс образования метана анаэробными археями, сопряжённый с получением ими энергии. Существует три типа метаногенеза:
- Восстановление одноуглеродных соединений с помощью молекулярного водорода или двух- и более углеродных спиртов.
- Диспропорционирование одноуглеродных соединений.
- Диспропорционирование ацетата.
Гидрогеносома — закрытая мембранная органелла некоторых одноклеточных анаэробных организмов, таких как инфузории, трихомонады и грибы. Подобно митохондриям, гидрогеносомы обеспечивают клетки энергией, но в отличие от первых функционируют в отсутствие кислорода. У облигатных анаэробов молекулярный кислород вызывает гибель гидрогеносом.
Пируватдегидрогена́зный ко́мплекс, ПДК (англ. Pyruvate dehydrogenase complex, PDH, PDC) — белковый комплекс, осуществляющий окислительное декарбоксилирование пирувата. Он включает в себя три фермента и два вспомогательных белка, а для его функционирования необходимы пять кофакторов (СоА, NAD+, тиаминпирофосфат (ТРР), FAD и липоевая кислота (липоат)). PDH локализован у бактерий в цитозоле, а у эукариот — в митохондриальном матриксе. Суммарное уравнение катализируемой реакции таково:
Общий путь катаболизма — совокупность биохимических процессов, которая включает в себя:
- окисление пирувата до ацетил-КоА;
- окисление ацетил-КоА в цикле трикарбоновых кислот;
Ферредокси́ны — группа небольших растворимых белков, содержащих железосерные кластеры и являющихся подвижными переносчиками электронов в ряде метаболических процессов. Обычно они переносят один или два электрона за счёт изменения окисленности атомов железа.
Окисли́тельное декарбоксили́рование пирува́та — биохимический процесс, заключающийся в отщеплении одной молекулы углекислого газа (СО2) от молекулы пирувата и присоединении к декарбоксилированному пирувату кофермента А (КоА) с образованием ацетил-КоА; является промежуточным этапом между гликолизом и циклом трикарбоновых кислот. Декарбоксилирование пирувата осуществляет сложный пируватдегидрогеназный комплекс (ПДК), включающий в себя 3 фермента и 2 вспомогательных белка, а для его функционирования необходимы 5 кофакторов. Суммарное уравнение окислительного декарбоксилирования пирувата таково:
Фотосисте́ма I, или пластоциани́н-ферредокси́н-оксидоредукта́за — второй функциональный комплекс электрон-транспортной цепи (ЭТЦ) хлоропластов. Он принимает электрон от пластоцианина и, поглощая световую энергию, формирует сильный восстановитель П700, способный через цепь переносчиков электронов осуществить восстановление НАДФ+. Таким образом, при участии ФСI синтезируется источник электронов (НАДФН) для последующих реакций восстановления углерода в хлоропластах в цикле Кальвина. Кроме того, ФСI может осуществлять циклический транспорт электронов, сопряжённый с синтезом АТФ, обеспечивая дополнительный синтез АТФ в хлоропластах.
Lokiarchaeota (лат.) — предполагаемый тип архей. Тип был описан в 2015 году на основании генома, собранного при метагеномном анализе образцов, полученных рядом с гидротермальными источниками в Атлантическом океане на глубине 2,35 км. Филогенетический анализ показал, что Lokiarchaeota и эукариоты образуют монофилетический таксон. Геном Lokiarchaeota содержит около 5400 генов, кодирующих белки. Среди них были обнаружены гены, близкие к генам эукариот. В частности, гены, кодирующие белки, отвечающие за изменение формы клеточной мембраны, определение формы клетки и динамический цитоскелет. Таким образом, находит своё подтверждение эоцитная гипотеза, согласно которой эукариоты представляют собой группу внутри архей, приобретшую митохондрии путем симбиогенеза.
Путь Вуда — Льюнгдаля, восстановительный ацетил-КоА путь — метаболический путь, представляющий собой серию биохимических реакций, используемых некоторыми анаэробными хемолитоавтотрофными бактериями (ацетогенами в процессе ацетогенеза) и археями-метаногенами в процессе (метаногенеза) для фиксации СO2 и получения энергии. Этот путь позволяет организмам использовать водород в качестве донора электронов и диоксид углерода — в качестве акцептора и строительного блока для биосинтеза органических молекул.
НАДН-дегидрогена́зный ко́мплекс хлоропла́стов — мультибелковый комплекс электронотранспортной цепи фотосинтеза, расположенный в тилакоидной мембране пластид высших растений и водорослей. Комплекс окисляет ферредоксин и восстанавливает молекулы пластохинона, которые высвобождаются в мембрану. При этом энергия окисленного восстановительного эквивалента расходуется на перенос протонов из стромы хлоропласта в люмен тилакоида с образованием протонного градиента. Показано большее сходство НАДН-дегидрогеназного комплекса хлоропластов с цианобактериальным НАДН дегидрогеназным комплексом (NDH-1), чем с митохондриальным комплексом I.
Митохондриа́льный ма́трикс или просто ма́трикс — ограниченное внутренней мембраной пространство, расположенное внутри митохондрий. Слово «матрикс» происходит из того, что эта среда является намного более вязкой по сравнению с более водянистой цитоплазмой. В состав матрикса входит множество веществ, включая ферменты, митохондриальную ДНК (кольцевая), рибосомы, малые органические молекулы, нуклеотидные коферменты и неорганические ионы. Ферменты матрикса содействуют реакциям биохимических процессов, в ходе которых синтезируется АТФ, таких как цикл трикарбоновых кислот, окислительное фосфорилирование, окисление пирувата и бета-окисление жирных кислот.
Ферредоксин-НАДФ+-редуктаза, сокращенно ФНР, фермент из класса оксидоредуктаз, катализирующий реакцию восстановления НАДФ+, используя в качестве донора электронов ферредоксин.
Ацетогенез — биохимический процесс, в результате которого из диоксида углерода и донора электронов образуется уксусная кислота (ацетат). Данный процесс используют анаэробные организмы в последовательности биохимических реакций восстановительного ацетил-КoA пути. Группа различных видов бактерий, способных к ацетогенезу, называется ацетогенами. Некоторые ацетогены способны синтезировать ацетат автотрофно из диоксида углерода и водорода. Суммарная реакция автотрофного синтеза ацетата:
- ΔG°'= -95 кДж/моль
Биосинтез жирных кислот — это биохимический путь синтеза жирных кислот клеткой из предшественников ацетил-КоА и НАДФН под действием ферментов называемых синтазы жирных кислот. Этот процесс происходит в цитоплазме клетки. Основная часть ацетил-КоА, которая превращается в жирные кислоты получается из углеводов в процессе гликолиза. В гликолитическом пути также образуется глицерин с которым могут соединяться три остатка жирных кислот образуя триглицериды, конечного продукта процесса липогенеза. Если с глицерином соединяются только два остатка жирных кислот, а третья спиртовая группа фосфорилируется, например, фосфатидилхолином, образуются фосфолипиды. Фосфолипиды образуют липидные бислои, которые составляют основную часть клеточных мембран и мембран внутриклеточных органелл