Нейро́нная сеть — математическая модель, а также её программное или аппаратное воплощение, построенная по принципу организации и функционирования биологических нейронных сетей — сетей нервных клеток живого организма. Это понятие возникло при изучении процессов, протекающих в мозге, и при попытке смоделировать эти процессы. Первой такой попыткой были нейронные сети У. Маккалока и У. Питтса. После разработки алгоритмов обучения получаемые модели стали использовать в практических целях: в задачах прогнозирования, для распознавания образов, в задачах управления и др.
Нейрокомпьютер — устройство переработки информации на основе принципов работы естественных нейронных систем. Эти принципы были формализованы, что позволило говорить о теории искусственных нейронных сетей. Проблематика же нейрокомпьютеров заключается в построении реальных физических устройств, что позволит не просто моделировать искусственные нейронные сети на обычном компьютере, но так изменить принципы работы компьютера, что станет возможным говорить о том, что они работают в соответствии с теорией искусственных нейронных сетей.
Многослойный перцептрон — частный случай перцептрона Розенблатта, в котором один алгоритм обратного распространения ошибки обучает все слои. Название по историческим причинам не отражает особенности данного вида перцептрона, то есть не связано с тем, что в нём имеется несколько слоёв. Особенностью является наличие более чем одного обучаемого слоя. Необходимость в большом количестве обучаемых слоёв отпадает, так как теоретически единственного скрытого слоя достаточно, чтобы перекодировать входное представление таким образом, чтобы получить линейную разделимость для выходного представления. Существует предположение, что, используя большее число слоёв, можно уменьшить число элементов в них, то есть суммарное число элементов в слоях будет меньше, чем если использовать один скрытый слой. Это предположение успешно используется в технологиях глубокого обучения и имеет обоснование.
Метод k-средних — наиболее популярный метод кластеризации. Был изобретён в 1950-х годах математиком Гуго Штейнгаузом и почти одновременно Стюартом Ллойдом. Особую популярность приобрёл после работы Маккуина.
Рекуррентные нейронные сети — вид нейронных сетей, где связи между элементами образуют направленную последовательность. Благодаря этому появляется возможность обрабатывать серии событий во времени или последовательные пространственные цепочки. В отличие от многослойных перцептронов, рекуррентные сети могут использовать свою внутреннюю память для обработки последовательностей произвольной длины. Поэтому сети RNN применимы в таких задачах, где нечто целостное разбито на части, например: распознавание рукописного текста или распознавание речи. Было предложено много различных архитектурных решений для рекуррентных сетей от простых до сложных. В последнее время наибольшее распространение получили сеть с долговременной и кратковременной памятью (LSTM) и управляемый рекуррентный блок (GRU).
N-грамма — последовательность из n элементов. С семантической точки зрения это может быть последовательность звуков, слогов, слов или букв. На практике чаще встречается N-грамма как ряд слов, устойчивые словосочетания называют коллокацией. Последовательность из двух последовательных элементов часто называют биграмма, последовательность из трёх элементов называется - триграмма. Не менее четырёх и выше элементов обозначается как N-грамма, N заменяется на количество последовательных элементов.
Дистрибути́вная сема́нтика — это область лингвистики, которая занимается вычислением степени семантической близости между лингвистическими единицами на основании их распределения (дистрибуции) в больших массивах лингвистических данных.
Свёрточная нейронная сеть — специальная архитектура искусственных нейронных сетей, предложенная Яном Лекуном в 1988 году и нацеленная на эффективное распознавание образов, входит в состав технологий глубокого обучения. Использует некоторые особенности зрительной коры, в которой были открыты так называемые простые клетки, реагирующие на прямые линии под разными углами, и сложные клетки, реакция которых связана с активацией определённого набора простых клеток. Таким образом, идея свёрточных нейронных сетей заключается в чередовании свёрточных слоёв и субдискретизирующих слоёв. Структура сети — однонаправленная, принципиально многослойная. Для обучения используются стандартные методы, чаще всего метод обратного распространения ошибки. Функция активации нейронов — любая, по выбору исследователя.
Глубокое обучение — совокупность методов машинного обучения, основанных на обучении представлениям, а не специализированных алгоритмах под конкретные задачи. Многие методы глубокого обучения были известны ещё в 1980-е, но результаты не впечатляли, пока продвижения в теории искусственных нейронных сетей и вычислительные мощности середины 2000-х годов не позволили создавать сложные технологические архитектуры нейронных сетей, обладающие достаточной производительностью и позволяющие решать широкий спектр задач, не поддававшихся эффективному решению ранее, например, в компьютерном зрении, машинном переводе, распознавании речи, причём качество решения во многих случаях теперь сопоставимо, а в некоторых превосходит эффективность человека.
Векторное представление — общее название для различных подходов к моделированию языка и обучению представлений в обработке естественного языка, направленных на сопоставление словам из некоторого словаря векторов из для , значительно меньшего количества слов в словаре. Теоретической базой для векторных представлений является дистрибутивная семантика.
Длинная цепь элементов краткосрочной памяти — разновидность архитектуры рекуррентных нейронных сетей, предложенная в 1997 году Зеппом Хохрайтером и Юргеном Шмидхубером. Как и большинство рекуррентных нейронных сетей, LSTM-сеть является универсальной в том смысле, что при достаточном числе элементов сети она может выполнить любое вычисление, на которое способен обычный компьютер, для чего необходима соответствующая матрица весов, которая может рассматриваться как программа. В отличие от традиционных рекуррентных нейронных сетей, LSTM-сеть хорошо приспособлена к обучению на задачах классификации, обработки и прогнозирования временных рядов в случаях, когда важные события разделены временными лагами с неопределённой продолжительностью и границами. Относительная невосприимчивость к длительности временных разрывов даёт LSTM преимущество по отношению к альтернативным рекуррентным нейронным сетям, скрытым марковским моделям и другим методам обучения для последовательностей в различных сферах применения. Из множества достижений LSTM-сетей можно выделить наилучшие результаты в распознавании несегментированного слитного рукописного текста, и победу в 2009 году на соревнованиях по распознаванию рукописного текста (ICDAR). LSTM-сети также используются в задачах распознавания речи, например LSTM-сеть была основным компонентом сети, которая в 2013 году достигла рекордного порога ошибки в 17,7 % в задаче распознавания фонем на классическом корпусе естественной речи TIMIT. По состоянию на 2016 год ведущие технологические компании, включая Google, Apple, Microsoft и Baidu, используют LSTM-сети в качестве фундаментального компонента новых продуктов.
Нейронный машинный перевод Google (GNMT) — это система нейронного машинного перевода (NMT), разработанная компанией Google и представленная в ноябре 2016 года, которая использует искусственную нейронную сеть для повышения беглости и точности перевода в Google Переводчике.
Нейронный машинный перевод — это подход к машинному переводу, в котором используется большая искусственная нейронная сеть. Он отличается от методов машинного перевода, основанных на статистике фраз, которые используют отдельно разработанные подкомпоненты.
Deeplearning4j — библиотека программ на языке Java, используемая как фреймворк для глубокого обучения. Включает реализацию ограниченной машины Больцмана, глубокой сети доверия, глубокого автокодировщика, стекового автокодировщика с фильтрацией шума, рекурсивной тензорной нейронной сети, word2vec, doc2vec, and GloVe. Эти алгоритмы включены также в версии библиотеки, поддерживающие распределённые вычисления, интегрированные с архитектурами Apache Hadoop и Spark.
Нейро́нный проце́ссор — это специализированный класс микропроцессоров и сопроцессоров, используемый для аппаратного ускорения работы алгоритмов искусственных нейронных сетей, компьютерного зрения, распознавания по голосу, машинного обучения и других методов искусственного интеллекта.
Рекурсивные нейронные сети — вид нейронных сетей, работающих с данными переменной длины. Модели рекурсивных сетей используют иерархические структуры образцов при обучении. Например, изображения, составленные из сцен, объединяющих подсцены, включающие много объектов. Выявление структуры сцены и её деконструкция- нетривиальная задача. При этом необходимо как идентифицировать отдельные объекты, так и всю структуру сцены.
Обучение признакам или обучение представлениям — это набор техник, которые позволяют системе автоматически обнаружить представления, необходимые для выявления признаков или классификации исходных (сырых) данных. Это заменяет ручное конструирование признаков и позволяет машине как изучать признаки, так и использовать их для решения специфичных задач.
Оптимизация гиперпараметров — задача машинного обучения по выбору набора оптимальных гиперпараметров для обучающего алгоритма.
Индукция грамматики — процедура машинного обучения, которая восстанавливает формальную грамматику языка на основе набора наблюдений (примеров) с известной принадлежностью этому языку. В результате процедуры строится модель наблюдаемых объектов в виде набора правил вывода или порождающих правил, конечного автомата или автомата другого вида. В более общем смысле, грамматический вывод — это одно из направлений машинного обучения, в котором пространство примеров состоит из дискретных комбинаторных объектов, таких как строки, деревья, графы.
Языкова́я модель — это распределение вероятностей по последовательностям слов. Для любой последовательности слов длины m языковая модель присваивает вероятность всей последовательности. Языковые модели генерируют вероятности путём обучения на корпусе текстов на одном или нескольких языках. Учитывая, что языки могут использоваться для выражения огромного множества верных предложений, языковое моделирование сталкивается с проблемой задания ненулевых вероятностей лингвистически верным последовательностям, которые могут никогда не встретиться в обучающих данных. Для преодоления этой проблемы было разработано несколько подходов к моделированию, таких как применение марковских цепей или использование нейронных архитектур, таких как рекуррентные нейронные сети или трансформеры.