Антиводоро́д — аналог водорода, состоящий из антивещества. В то время как обычный атом водорода состоит из электрона и протона, атом антиводорода состоит из позитрона и антипротона. Учёные надеются, что изучение антиводорода поможет пролить свет на вопрос, почему в наблюдаемой Вселенной больше материи, чем антиматерии, известный как проблема барионной асимметрии. Антиводород вырабатывается искусственно в ускорителях заряженных частиц.
Мезо́н — адрон, имеющий нулевое значение барионного числа. В Стандартной модели мезоны — составные элементарные частицы, состоящие из равного числа кварков и антикварков. К мезонам относятся пионы, каоны (K-мезоны) и другие, более тяжёлые, мезоны.
Тетракварк — элементарная частица, адрон, состоящий из двух кварков и двух антикварков. Спин тетракварка может быть только целым, поэтому тетракварковую структуру могут иметь только мезоны. Из-за наличия большего числа степеней свободы, тетракварки могут обладать квантовыми числами, невозможными в случае кварк-антикварковых пар. Вместе с обычными кварк-антикварковыми состояниями, мезонной молекулой является одним трёх сценариев описания скалярных мезонов. Открыт в 2014 году экспериментом LHCb Большого адронного коллайдера.
Корпускулярно-волновой дуализм — свойство природы, состоящее в том, что материальные микроскопические объекты могут при одних условиях проявлять свойства классических волн, а при других — свойства классических частиц.
В физике элементарных частиц майора́новский фермио́н, или фермио́н Майора́ны — фермион, который является своей собственной античастицей. Существование таких частиц было впервые рассмотрено итальянским физиком Этторе Майораной в 1937 году. В экспериментах с полупроводниковыми нанопроволоками наблюдались квазичастицы, обладающие свойствами майорановского фермиона. Экспериментальное обнаружение майорановских частиц как в физике высоких энергий, так и в области физики твёрдого тела приведёт к важным последствиям для науки в целом.
X(4140) — ранее не предсказанная Стандартной моделью частица. Впервые наблюдалась в Фермилабе и об её открытии было объявлено 17 марта 2009 года. Название обусловлено тем, что масса открытой частицы составляет около 4140 МэВ/c². Эта частица является чрезвычайно редкой и обнаруживается только в 1 случае из 20 миллиардов столкновений.
Хамелео́н — гипотетическая элементарная частица, скалярный бозон с нелинейным самодействием, которое делает эффективную массу частицы зависящей от окружения. Такая частица может иметь малую массу в межгалактическом пространстве и большую — в экспериментах на Земле. Хамелеон — возможный носитель тёмной энергии и составная часть тёмной материи, возможная причина ускорения расширения Вселенной.
Zc(3900) — в физике элементарных частиц адрон, тип элементарных частиц, состоящий из кварков, предположительно первый тетракварк, который был наблюдаем экспериментально. Наблюдение было произведено в 2013 году двумя независимыми исследовательскими коллективами из Китая и Японии: первый использовал детектор BES III китайского, расположенного в Пекине, коллайдера BEPC II, второй же был частью эксперимента Belle коллектива японской организации в физике элементарных частиц KEK.
Список наблюдений гравитационных волн представляет собой список прямых наблюдений гравитационных волн, проведённых с момента их обнаружения, и относится к гравитационно-волновой астрономии. Впоследствии к наблюдениям LIGO подключились интерферометры Virgo в 2017 году и KAGRA в 2020 году.
XENON — исследовательский проект по изучению темной материи, который проводится в лаборатории Гран Сассо в Италии. Исследовательская лаборатория находится глубоко под землей, где ученые ставят эксперименты, пытаясь выявить и исследовать частицы темной материи. Исследователи считают, что эти слабо взаимодействующие массивные частицы можно обнаружить, если фиксировать жидкие ядерные распады и возмущения в закрытой камере, наполненной ксеноном. Нынешний детектор состоит из двухфазной время-проекционной камеры (ВПК).
Гексакварк — в физике элементарных частиц большое семейство гипотетических частиц, каждая из которых состоит из шести кварков или антикварков любых ароматов. Шесть составляющих кварков в любой из нескольких комбинаций могут дать нулевой цветовой заряд; например гексакварк может представлять собой два связанных друг с другом бариона (дибарион), или три кварка и три антикварка. По прогнозам, после образования дибарионы будут достаточно стабильными.
Экзотические адроны — субатомные частицы, состоящие из кварков и глюонов, которые, в отличие от «хорошо известных» адронов, таких как протоны, нейтроны и мезоны, состоят из более чем трёх валентных кварков. «Обычные» адроны содержат всего два или три кварка. Адроны с необычным содержанием валентных глюонов также считались бы экзотическими. Теоретически не существует ограничения на количество кварков в адроне, если цветовой заряд адрона белый или нейтральный по цвету.
X (3872) — субатомная частица, кандидат в экзотические мезоны с массой 3871,68 МэВ/с2, которая не вписывается в кварковую модель из-за необычных значений её квантовых чисел. Впервые была обнаружена в 2003 году в результате эксперимента Belle в Японии, а затем подтверждена рядом других экспериментальных коллабораций. Было предложено несколько объяснений её природы таких как мезонная молекула или пара дикварк-антидикварк (тетракварк).
Эксперимент Belle был проведён Belle Collaboration, международным сообществом из более чем 400 физиков и инженеров, в Исследовательской организации ускорителей высоких энергий (KEK) в Цукубе, префектура Ибараки, Япония. Эксперимент проводился с 1999 по 2010 год.
Y (4260) — аномальная частица с энергией 4260 МэВ, которая, по-видимому, не вписывается в кварковую модель. Была обнаружен экспериментом BaBar в Стэнфордском университете для Министерства энергетики в Калифорнии, а затем подтвержден рядом других экспериментальных коллабораций. Предположение, что частица является одним из состояний чармония, маловероятно, потому что Y(4260) тяжелее порога DD, однако находится, как ни странно, на спаде кривой возникновения для пар D. Вполне возможно, что это гибрид — предсказанный, но ещё не обнаруженный тип частиц, где глюон фактически является постоянной частью структуры частицы, а не просто эфемерным посредником, удерживающим кварки связанными вместе.
Экзотические барионы — тип адронов с полуцелым спином, но имеющих в своём составе число кварков, отличное от трёх (qqq), характерных для обычных барионов. Примером могут служить пентакварки, состоящие из четырёх кварков и одного антикварка (qqqqq̅).
Сильно взаимодействующие массивные частицы (SIMP) — гипотетические частицы, которые сильно взаимодействуют между собой и слабо с обычной материей и могут образовывать гипотетическую тёмную материю. Эта гипотеза основывалась на наблюдениях взаимодействующих галактик в кластере Abell 2827, однако с тех пор была поставлена под сомнение дальнейшими наблюдениями и моделированием кластера.
Странный B-мезон (Bs-мезон) — мезон, который состоит из двух кварков: нижнего антикварка и странного кварка. Его античастицей является B
s -мезон, состоящий из нижнего кварка и странного антикварка.
MINOS — эксперимент физики элементарных частиц, предназначенный для изучения феномена осцилляций нейтрино, впервые обнаруженных в эксперименте Супер-Камиоканде (Super-K) в 1998 году. Нейтрино, производимые NuMI в Фермилабе вблизи Чикаго, затем наблюдаются двумя детекторами, один расположен очень близко к тому месту, где производится нейтринный луч, и ещё один гораздо более крупный детектор, расположенный в 735 км в северной Миннесоте.
Эксперименты Хьюза и Древера представляют собой спектроскопические тесты изотропии массы и пространства. Хотя первоначально он задумывался как проверка принципа Маха, теперь он понимается как важная проверка лоренц-инвариантности. Как и в опыте Майкельсона — Морли, можно проверить существование предпочтительной системы отсчёта или других отклонений от лоренц-инвариантности, что также влияет на справедливость принципа эквивалентности. Таким образом, эти эксперименты касаются фундаментальных аспектов как специальной, так и общей теории относительности. В отличие от опытов типа Майкельсона — Морли, эксперименты Хьюза и Древера проверяют изотропию взаимодействий самой материи, то есть протонов, нейтронов и электронов. Достигнутая точность делает этот вид эксперимента одним из самых точных подтверждений теории относительности.