
Органе́ллы, раннее называвшиеся также органо́идами, — постоянные компоненты клетки. Располагаются во внутренней части клетки — цитоплазме, в которой, наряду с органеллами, могут находиться различные включения.

Крахма́л — органическое вещество с формулой (C6H10O5)n, смесь полисахаридов амилозы и амилопектина, мономером которых является альфа-глюкоза. Крахмал синтезируется растениями в хлоропластах с использованием энергии света при фотосинтезе. Крахмал, полученный из разных растений, несколько различается по структуре зёрен, степени полимеризации молекул, строению полимерных цепей и физико-химическим свойствам.

Пласти́ды — полуавтономные органеллы высших растений, водорослей и некоторых фотосинтезирующих простейших. Пластиды имеют от двух до четырёх мембран, собственный геном и белоксинтезирующий аппарат.

Лейкопла́сты — бесцветные сферические пластиды в клетках растений. Основная функция лейкопластов — накопление питательных веществ.

Клу́бень — видоизменённый укороченный побег растения, имеющий более или менее шаровидную форму в результате разрастания одного или нескольких междоузлий и с редуцированными листьями. Клубни развиваются, как правило, на концах столонов — боковых вытянутых побегов корневища. Используются растениями для запасания питательных веществ, для бесполого размножения, а также для выживания зимой и в засушливые месяцы. В клубнях запасаются нутриенты и энергия для роста в следующий вегетационный период.

Тилакоиды — ограниченные мембраной компартменты внутри хлоропластов и цианобактерий. В тилакоидах происходят светозависимые реакции фотосинтеза. Слово «тилакоид» происходит от греческого слова θύλακος, означающего «мешочек». Тилакоиды состоят из мембраны, окружающей просвет тилакоида. Тилакоиды хлоропластов часто имеют структуру, напоминающую стопку дисков. Эти стопки называют гранами. Граны соединены межграновыми или строматическими тилакоидами (ламеллами) в единое функциональное пространство.
Виро́иды — инфекционные агенты, состоящие только из кольцевой РНК. Они вызывают различные болезни растений, в том числе веретеновидность клубней картофеля, экзокортис цитрусовых и карликовость хризантемы. По оценкам учёных, более трети вирусных заболеваний растений вызываются вироидами.

Хромопла́сты — жёлтые, оранжевые, красные, иногда коричневые пластиды высших растений.

Абсци́зовая кислота́, абсцизин, дормин — это гормон растений (изопреноид). Впервые была обнаружена в экспериментах по поиску вещества по способности вызывать опадение листьев и коробочек хлопчатника. Первые препараты абсцизовой кислоты (АБК) были независимо выделены в 1963 г. из листьев берёзы Ф. Эддикоттом и сотрудниками (США) и Ф. Уорингом и сотрудниками (Великобритания).

Циане́ллы — пластиды глаукофитовых водорослей. Окрашены в сине-зелёный цвет, так как зелёный хлорофилл a маскируется пигментами фикоцианином и аллофикоцианином, расположенными на поверхности тилакоидов. Особое название используется для них потому, что они обладают уникальным признаком: имеют тонкую клеточную стенку из пептидогликана (муреина) между наружной и внутренней мембраной. По большинству других признаков цианеллы напоминают типичные цианобактерии, хотя содержат сильно редуцированный геном.

Глаукофи́товые во́доросли, или глаукофи́ты, или глаукоцистофи́ты — небольшой древний отдел одноклеточных водорослей, включающий восемь родов и 21 вид. Глаукофиты особенно интересны своими уникальными хлоропластами (цианеллами), довольно примитивно устроенными по сравнению с хлоропластами других водорослей: они содержат слой муреина между мембранами и характеризуются множеством других свойств, присущих цианобактериям. Согласно современным представлениям, глаукофитовые водоросли обособились в отдельную группу у самого основания Archaeplastida.

Расти́тельные кле́тки — эукариотические клетки, однако несколькими своими свойствами они отличаются от клеток остальных эукариот. К их отличительным чертам относят:
- Крупная центральная вакуоль, пространство, заполненное клеточным соком и ограниченное мембраной — тонопластом. Вакуоль играет ключевую роль в поддержании клеточного тургора, контролирует перемещение молекул из цитозоля в выделения клетки, хранит полезные вещества и расщепляет отслужившие старые белки и органеллы.
- Есть клеточная стенка, состоящая главным образом из целлюлозы, а также гемицеллюлозы, пектина и во многих случаях лигнина. Она образуется протопластом поверх клеточной мембраны. Она отличается от клеточной стенки грибов, состоящей из хитина, и бактерий, построенной из пептидогликана (муреина).
- Специализированные пути связи между клетками — плазмодесмы, цитоплазматические мостики: цитоплазма и эндоплазматический ретикулум (ЭПР) соседних клеток сообщаются через поры в клеточных стенках.
- Пластиды, из которых наиболее важны хлоропласты. Хлоропласты содержат хлорофилл, зелёный пигмент, поглощающий солнечный свет. В них осуществляется фотосинтез, в ходе которого клетка синтезирует органические вещества из неорганических. Другими пластидами являются лейкопласты: амилопласты, запасающие крахмал, элайопласты, хранящие жиры и др., а также хромопласты, специализирующиеся на синтезе и хранении пигментов. Как и митохондрии, чей геном у растений содержит 37 генов, пластиды имеют собственные геномы (пластомы), состоящие из около 100—120 уникальных генов. Как предполагается, пластиды и митохондрии возникли как прокариотические эндосимбионты, поселившиеся в эукариотических клетках.
- Деление клеток (митоз) наземных растений и некоторых водорослей, особенно харовых (Charophyta) и порядка Trentepohliales характеризуется наличием дополнительной стадии — препрофазы. Помимо этого цитокинез у них осуществляется при помощи фрагмопласта — «формы» для строящейся клеточной пластинки.
- Мужские половые клетки мхов и папоротниковидных имеют жгутик, схожий со жгутиком сперматозоидов животных, но у семенных растений — голосеменных и цветковых — они лишены жгутика и называются спермиями.
- Из присущих животной клетке органелл у растительной отсутствуют только центриоли.
Клептопласти́я — явление накопления хлоропластов водорослей в тканях организма, питающегося ими. Водоросли, за исключением хлоропластов, при этом перевариваются, но хлоропласты какое-то время фотосинтезируют, и продукты фотосинтеза используются хозяином.

Статоци́ты — клетки растений, обеспечивающие гравитропизм. Внутри они содержат статоли́ты — плотные органеллы, оседающие в нижней части клетки и за счёт этого регулирующие рост корня относительно вертикальной оси. У высших растений статолиты представлены преимущественно специализированными амилопластами, у харовых водорослей в ризоидах располагаются «блестящими телами», содержащие кристаллический сульфат бария. Ткань, состоящая из статоцитов, называется статенхи́мой. Наиболее изучены статоциты корневых чехликов и крахмалоносных влагалищ стебля.
Терминальная оксидаза, или альтернативная оксидаза пластид, — фермент, который находится на стромальной стороне тилакоидной мембраны в хлоропластах растений и водорослей и внутриклеточных впячиваниях цитоплазматической мембраны цианобактерий. Впервые гипотеза о его существовании была высказан в 1982 году, и подтвердилась годами позже, после открытия в мембране тилакоида фермента, аминокислотная последовательность которого была сходной с таковой у альтернативной оксидазы митохондрий. Обе оксидазы произошли от общего предшественника — белка прокариот, и настолько схожи в структурном и функциональном плане, что помещённая в тилакоид альтернативная оксидаза может заменить выключенную терминальную оксидазу.
Геронтопласты — пластиды увядающих и стареющих тканей. Образуется из обычных хлоропластов, которые подвергаются ряду изменений в процессе старения. Их отличительные черты — округлая форма, меньший по сравнению с нормальными хлоропластами размер и большое количество пластоглобул .
Триозофосфатный транслокатор (ТФТ) — интегральный белок-переносчик внутренней мембраны хлоропластов. Он осуществляет экспорт триозофосфатов, образовавшихся в цикле Кальвина, в цитоплазму в обмен на неорганический фосфат. Белок ТФТ — димер, состоящий из двух идентичных субъединиц и содержит от шести до восьми гидрофобных доменов, которые образуют трансмембранные α-спирали. В качестве субстратов ТФТ использует дигидроксиацетонфосфат, глицеральдегид-3-фосфат а также 3-фосфоглицериновую кислоту (3-ФГК). Таким образом, в цитоплазму попадает углерод, необходимый для синтеза сахарозы, а в хлоропласты транспортируется фосфат, который используется для регенерации АТФ и синтеза новых триозофосфатов. Кроме поддержания баланса фосфора между цитоплазмой и пластидами, триозофосфатный транслокатор способен экспортировать триозофофсфаты в обмен на 3-ФГК. В цитозоле ДГАФ или 3-ФГА подвергаются окислению в процессе гликолиза, что приводит к восстановлению одной молекулы НАД+ до НАДН и синтезу одной молекулы АТФ. Триозофосфат, окисленный до состояния 3-ФГК, вновь транспортируется в хлоропласт, где поступает в цикл Кальвина, а новый триозофосфат выходит в цитоплазму. Таким образом, ТФТ транспортирует восстановительные эквиваленты и АТФ в цитоплазму; этот механизм особенно важен, поскольку у пластид высших растений, в отличие от митохондрий, нет транспортёров, которые могли бы перекачивать АТФ или АДФ

Хлорарахниофи́товые во́доросли — клада морских одноклеточных водорослей, входящая в состав группы церкозоев, которым в последних работах систематиков присваивают ранг класса и типа соответственно. Распространены в морях тропического и умеренного поясов. Для организмов этой группы характерно наличие четырёхмембранных хлоропластов, в перипластидном пространстве которых находится нуклеоморф — редуцированное ядро эндосимбиотического эукариота. Хлорарахниофитовые водоросли — миксотрофы, они содержат хлорофиллы a и b и способны к фаготрофному питанию. Размножаются вегетативным и бесполым путём, у некоторых описан половой процесс. По последним данным, клада содержит 14 видов в 8 родах.
C4-фотосинтез, или цикл Хэтча — Слэка, — путь связывания углерода, характерный для высших растений, первым продуктом которого является четырёхуглеродная щавелевоуксусная кислота, а не трёхуглеродная 3-фосфоглицериновая кислота, как у большинства растений с обычным C3-фотосинтезом.
Гипотеза CoRR — предположение в эволюционной биологии, согласно которому локализация генетической информации в цитоплазматических органеллах позволяет регулировать её экспрессию путём окислительно-восстановительных модификаций собственных генных продуктов.