
Пусто́е мно́жество — множество, не содержащее ни одного элемента. Из аксиомы объёмности следует, что есть только одно множество, обладающее таким свойством. Пустое множество является своим (тривиальным) подмножеством, но не является своим элементом.

Конъю́нкция — логическая операция, по смыслу максимально приближенная к союзу «и». Синонимы: логи́ческое «И», логи́ческое умноже́ние, иногда просто «И».

Дизъю́нкция, логи́ческое сложе́ние, логи́ческое ИЛИ, включа́ющее ИЛИ; иногда просто ИЛИ — логическая операция, по своему применению максимально приближённая к союзу «или» в смысле «или то, или это, или оба сразу».
Логика второго порядка в математической логике — формальная система, расширяющая логику первого порядка возможностью квантификации общности и существования не только над переменными, но и над предикатами и функциональными символами. Логика второго порядка несводима к логике первого порядка. В свою очередь, она расширяется логикой высших порядков и теорией типов.

Тео́рия катего́рий — раздел математики, изучающий свойства отношений между математическими объектами, не зависящие от внутренней структуры объектов.

То́чка — один из фундаментальных (неопределяемых) математических объектов, свойства которого задаются системой аксиом. Нестрого можно представлять точку как неделимый элемент соответствующего математического пространства, определяемого в геометрии, математическом анализе и других разделах математики. В классической геометрии и в большинстве её обобщений все геометрические фигуры считаются состоящими из точек.
Теория доказательств — раздел математической логики, представляющий доказательства в виде формальных математических объектов, осуществляя их анализ с помощью математических методов. Доказательства обычно представляются в виде индуктивно определённых структур данных, таких как списки и деревья, созданных в соответствии с аксиомами и правилами вывода формальных систем. Таким образом, теория доказательств является синтаксической, в отличие от семантической теории моделей. Вместе с теорией моделей, аксиоматической теорией множеств и теорией вычислений, теория доказательств является одним из так называемых «четырёх столпов» математики. Теория доказательств использует точное определение понятия доказательства при доказательстве невозможности доказательства того или иного предложения в рамках заданной математической теории.
Дескрипцио́нная логика — язык представления знаний, позволяющий описывать понятия предметной области в недвусмысленном, формализованном виде, организованный по типу языков математической логики. Дескрипционные логики сочетают, с одной стороны, богатые выразительные возможности, а с другой — хорошие вычислительные свойства, такие как разрешимость и относительно невысокая вычислительная сложность основных логических проблем, что делает возможным их применение на практике, обеспечивая компромисс между выразительностью и разрешимостью. Могут быть рассмотрены как разрешимые фрагменты логики предикатов, синтаксически же они близки к модальным логикам.
Неклассические логики — группа формальных систем, существенно отличающихся от классических логик путём различных вариаций законов и правил. Благодаря этим вариациям возможно построение различных моделей логических выводов и логической истины.
В логике обычно используется много символов для выражения логических сущностей. Поскольку логики знакомы с этими символами, они не объясняют их каждый раз при использовании. Для студентов, изучающих логику, следующая таблица перечисляет большинство общеупотребимых символов вместе с их именами и связанными областями математики. Кроме того, третий столбец содержит неформальное определение, шестой и седьмой дают код Unicode и имя для использования в HTML документах. Последний столбец даёт символ в системе LaTeX.
Логика высшего порядка в математике и логике — форма предикатной логики, которая отличается от логики первого порядка дополнительными предикатами над предикатами, кванторами над ними, и, соответственно, более богатой семантикой. Логики высшего порядка с их стандартными семантиками более выразительны, но их модельно-теоретические свойства значительно более сложны для изучения и применения по сравнению с логикой первого порядка.
Теорема Курселя — утверждение о том, что любое свойство графа, определяемое в монадической логике второго порядка логике графов, может быть установлено за линейное время на графах с ограниченной древесной шириной. Результат впервые доказан Брюно Курселем в 1990 году и независимо переоткрыт Бори, Паркером и Товейем. Результат считается прототипом алгоритмических метатеорем.
Исчисление секвенций — вариант логических исчислений, использующий для доказательства утверждений не произвольные цепочки тавтологий, а последовательности условных суждений — секвенций. Наиболее известные исчисления секвенций —
и
для классического и интуиционистского исчислений предикатов — построены Генценом в 1934 году, позднее сформулированы секвенциальные варианты для широкого класса прикладных исчислений, теорий типов, неклассических логик.
Линейная логика — подструктурная логика, предложенная Жан-Ивом Жираром как уточнение классической и интуиционистской логики, объединяющая двойственность первой со многими конструктивными свойствами последней, введена и используется для логических рассуждений, учитывающих расход некоторого ресурса. Хотя логика также изучалась сама по себе, идеи линейной логики находят применения во множестве приложений, вычисления в которых требуют учёта ресурсов, в том числе для верификации сетевых протоколов, языки программирования, теория игр и квантовая физика, лингвистика.
Субструктурная логика — логика, в которой отсутствует одно из обычных cтруктурных правил, таких как ослабление, контракция, обмен или ассоциативность. Двумя наиболее значимыми субструктурными логиками являются релевантная и линейная.
Монотонность следствия — свойство многих формальных систем, согласно которому, если из множества высказываний дедуктивно выводится определённое суждение, то оно также следует и из любого супермножества данных высказываний. Следствием, является вывод, о том, что если данный аргумент дедуктивно общезначим, то при добавлении дополнительных посылок, его невозможно сделать ложным.
Идемпотентность следствия — характерное свойство формальных систем, которое заключается в том, что из множества возможных вариантов гипотезы можно вывести те же следствия, что и из конкретного её экземпляра. Данное свойство может быть отражено структурным правилом, называемым контракцией, и в таких системах принято утверждать, что следствие является идемпотентным, тогда и только тогда, когда контракция является допустимым правилом.