
Бе́лые ка́рлики — звёзды, состоящие из электронно-ядерной плазмы, лишённые источников термоядерной энергии и светящиеся благодаря своей тепловой энергии, постепенно остывая в течение миллиардов лет.
Металли́чность — относительная концентрация элементов тяжелее водорода и гелия в звёздах или иных астрономических объектах. Бо́льшая часть барионной материи во Вселенной находится в форме водорода и гелия, поэтому астрономы используют слово «металлы» как удобный термин для обозначения всех более тяжёлых элементов. Например, звёзды и туманности с относительно высоким содержанием углерода, азота, кислорода и неона в астрофизических терминах называются «богатыми металлами». При этом с точки зрения химии многие из этих элементов металлами не являются. Металличность используется, к примеру, для определения поколения и возраста звёзд.

Нуклеоси́нтез — природный процесс образования ядер химических элементов тяжелее водорода. Нуклеосинтез является причиной наблюдаемой распространённости химических элементов и их изотопов.

Ге́лиевая вспы́шка — взрывообразное начало ядерного горения гелия в звезде. Она возникает, если область, где происходит горение гелия, не может быстро охлаждаться при увеличении температуры, и тогда нагрев приводит к увеличению скорости ядерных реакций, что приводит к ещё большему нагреву вещества. Гелиевая вспышка оказывает влияние на химический состав звезды, и, в некоторых случаях, на её структуру.

Коричневые карлики — субзвёздные объекты, которые обладают промежуточными физическими характеристиками между планетами и звёздами. Их масса лежит в диапазоне приблизительно от 0,013 до 0,075 M⊙. Коричневые карлики могут поддерживать термоядерные реакции в своих недрах, но мощность реакций в них никогда не сравнивается с их собственной светимостью, поэтому такие объекты не выходят на постоянную светимость, как звёзды, а сжимаются и тускнеют.

Гига́нт — тип звёзд с большим радиусом и высокой светимостью. Обычно звёзды-гиганты имеют радиусы от 10 до 100 солнечных радиусов и светимости от 10 до 1000 светимостей Солнца. Светимость таких звёзд больше, чем у звёзд главной последовательности, но меньше, чем у сверхгигантов, и в Йеркской спектральной классификации такие звёзды имеют спектральные классы II и III.

Бу́дущее Вселе́нной — вопрос, рассматриваемый в рамках физической космологии. Различными научными теориями предсказано множество возможных вариантов будущего, среди которых есть мнения как об уничтожении, так и о бесконечной жизни Вселенной.

Ядерные реакции в звёздах являются их основным источником энергии. Они обеспечивают большое энерговыделение на единицу массы, что позволяет звёздам поддерживать высокую светимость в течение длительного времени. В этих реакциях образуется бо́льшая часть химических элементов, существующих в природе, — происходит нуклеосинтез. Протекание ядерных реакций возможно из-за высокой температуры в недрах звёзд, их темп зависит от температуры и плотности.
Скры́тая масса — проблема противоречия между наблюдаемым поведением видимых астрономических объектов и расчётным по законам небесной механики с учётом только этих объектов.

Эволю́ция звёзд в астрономии — изменение со временем физических и наблюдаемых параметров звезды из-за идущих в ней термоядерных реакций, излучения ею энергии и потери массы. Часто говорят об эволюции как о «жизни звезды», начинающейся, когда единственным источником энергии звезды становятся ядерные реакции, и заканчивающейся, когда реакции прекращаются, — у различных звёзд эволюция идёт по-разному. Согласно астрофизическим моделям, срок жизни звезды, в зависимости от начальной массы, продолжается от нескольких миллионов до десятков триллионов лет, поэтому астрономы прямо наблюдают только очень малый по сравнению с продолжительностью жизни звезды период её эволюции, на протяжении которого эволюционные изменения практически незаметны.

Горе́ние кре́мния — последовательность термоядерных реакций, протекающая в недрах массивных звёзд (минимум 8—11 солнечных масс), в ходе которой происходит превращение ядер кремния в ядра более тяжёлых элементов. Для данного процесса необходимо наличие высокой температуры (2,7—3,5⋅109 K, что соответствует кинетической энергии 230—300 кэВ) и плотности (105—106 г/см³). Стадия горения кремния следует за стадиями горения водорода, гелия, углерода, неона и кислорода; она является финальной стадией эволюции звезды за счёт термоядерных процессов. После её окончания в ядре звезды больше не остаётся доступных термоядерных источников энергии, поскольку в результате горения кремния образуются ядра группы железа, которые имеют максимальную энергию связи на один нуклон и более неспособны к термоядерным экзотермическим реакциям. Прекращение энерговыделения приводит к потере способности звёздного ядра противодействовать давлению внешних слоёв, к катастрофическому коллапсу звезды и вспышке сверхновой типа II.
Компактная звезда — в совокупности белые карлики, нейтронные звезды и черные дыры. Термин включает также экзотические звезды, если такие гипотетические плотные тела будут найдены. Все компактные объекты имеют большую массу относительно их радиуса, что придает им очень высокую плотность по сравнению с обычным атомным веществом.

Гало тёмной материи — гипотетический компонент галактик, окружающий галактический диск и простирающийся далеко за пределы видимой части галактики. Масса гало при этом является главным компонентом общей массы галактики. Поскольку данные гало состоят из тёмной материи, то не наблюдаются напрямую, однако их наличие определяется по оказываемому влиянию на движение звёзд и газа в галактиках. Гало тёмной материи играют ключевую роль в современных моделях возникновения и эволюции галактик.
Массивный астрофизический компактный объект гало — астрономический объект, способный объяснить присутствие тёмной материи в гало галактик.

Сверхновая II типа (англ. Type II supernova) — тип сверхновой звезды с коллапсирующим ядром, в которой в результате быстрого сжатия и последующего мощного взрыва массивной звезды происходит резкий (в 108 — 1010 раз) рост светимости звезды. Чтобы такой взрыв стал возможен, масса звезды должна превышать массу Солнца (Mʘ) по крайней мере в 8 раз, но не более чем в 40-50 раз. Классификация сверхновых основана на различии в их спектрах, и сверхновые типа II можно определить по характерной спектральной серии водорода. Такие сверхновые, как правило, наблюдаются в спиральных рукавах галактик и в областях Н II, но не в эллиптических галактиках.
Ядерное горение лития (англ. lithium burning) — процесс нуклеосинтеза, при котором в звезде исчерпываются запасы лития. Литий обычно присутствует в составе коричневых карликов, но отсутствует в маломассивных звёздах. Звёзды, которые смогли достигнуть высоких температур (2,5 × 106 K), необходимых для начала ядерных реакций с участием водорода, быстро исчерпывают запасы лития. При столкновении лития-7 и протона образуются два ядра гелия-4. Температура, необходимая для протекания подобной реакции, немного меньше температуры, минимальной для горения водорода. Конвекция в маломассивных звёздах приводит к исчезновению лития во всём объёме звезды. Следовательно, наличие спектральных линий лития показывает, что данное небесное тело является субзвёздным объектом.
Ядерное горение дейтерия — реакции термоядерного синтеза, которые происходят в звёздах и некоторых субзвёздных объектах. В этих реакциях принимают участие ядра дейтерия: наиболее распространено слияние с протоном, при котором образуется ядро гелия-3.

Взрывной нуклеосинтез — нуклеосинтез, происходящий в звёздах, потерявших гидростатическое равновесие: например, при взрывах сверхновых. Считается, что в процессах взрывного нуклеосинтеза, хотя бы частично, образуются все химические элементы от углерода до железа, а также некоторые элементы тяжелее железа.

Реакция скалывания — результат взаимодействия частиц высокой энергии с тяжёлым ядром, при котором из ядра вылетает часть нуклонов и лёгких кластеров.

Первичный нуклеосинтез — совокупность процессов, которые привели к образованию химического состава вещества во Вселенной до появления первых звёзд.