Бидуга́ — гладкая плоская кривая, составленная из двух круговых дуг, меньших полной окружности. Одной из дуг может быть отрезок прямой. Бидуги были предложены [1] для геометрического моделирования (построения, аппроксимации) кривых с заданными граничными точками и касательными в них. В классе бидуг эта задача имеет целое семейство решений, и требует дополнительных условий для нахождения конкретных кривых. Таковыми могут быть задание кривизны или поворота одной из дуг, фиксированная длина кривой[2], требование минимизации скачка кривизны в точке сопряжения, и т. п.
У бидуги зависимость кривизны от длины дуги монотонна (так как состоит из двух постоянных участков), поэтому бидуга является простейшей спиралью[3].
На рис. 1 показаны шесть бидуг . Точки и — начальная и конечная точки кривой, (join) — точка гладкого сопряжения двух дуг.
Примеры 1-4 иллюстрируют короткие бидуги: они не пересекают дополнение хорды до бесконечной прямой, хотя могут пересекать саму хорду (бидуга 1). Обычно именно такие кривые являются объектами аппроксимации.
Примеры 5 и 6 иллюстрируют длинные бидуги: они пересекают дополнение хорды, то есть закручиваются вокруг одной из концевых точек.
У кривых 1, 2 и 6 точка является точкой перегиба: в ней кривизна меняет знак (- на + у кривых 1, 2 и + на - у кривой 6).
Кривые помещены в систему координат хорды длины , в которой координаты начальной и конечной точек равны .
Ориентированные углы наклонов касательных в точках и , измеренные относительно направления хорды , обозначены и . Так, у бидуги 1 на рис. 1 , а у бидуг 2-6 — .
Описание семейства бидуг
Граничные касательные векторы у кривых 2-6 на рис. 1 одинаковы: Эти кривые являются членами однопараметрического семейства бидуг с общими касательными на концах. Всё семейство показано на нижнем фрагменте рисунка 2.
Далее основные свойства семейства бидуг с общими касательными на концах приведены по материалам статьи[4]. Параметр семейства обозначен . Обозначение бидуги в виде подразумевает фиксацию констант, то есть .
Рисунки 2, 3, 4 иллюстрируют такие семейства для различных пар
Рис. 2. Семейства бидуг с общими касательными на концах (два примера)
Рис. 3. Два семейства с общими (параллельными) касательными на концах:
Рис. 4. Семейства бидуг с или
Соотношения для углов и кривизн
Углы и считаются определёнными в диапазоне : , . Построение бидуги возможно при
Введём обозначения
.
Неравенства (1) означают, что .
Кривизна первой дуги и кривизна второй дуги выражаются, как функции параметра семейства, следующими формулами:
Пусть
и — поворот и длина дуги : ;
и — поворот и длина дуги : .
Справедливы равенства
Геометрическое место точек сопряжения
Точки сопряжения двух дуг расположены на окружности
Эта окружность выходит из точки под углом и проходит через точку При (то есть при ) это прямая (рис. 3). Бидуги семейства пересекают эту окружность под постоянным углом .
Вектор касательной к бидуге в точке сопряжения есть , где
Бидуга с минимальным скачком кривизны в точке сопряжения, реализуется при точка при этом лежит на оси ординат
Вырожденные бидуги
В семействе бидуг можно выделить следующие вырожденные бидуги.
Бидуга : при точка сопряжения бидуги стремится к точке , часть исчезает, превращаясь в бесконечный импульс кривизны. Бидуга вырождается в дугу окружности, опирающуюся на хорду и имеющую с бидугами семейства общую касательную в конечной точке.
Бидуга : стремление влечёт , часть исчезает. Бидуга вырождается в дугу окружности, опирающуюся на хорду и имеющую с бидугами семейства общую касательную в начальной точке.
Бидуга , где
представляет собой разрывную бидугу, проходящую через бесконечно удалённую точку плоскости. Всегда , а неравенства (1) исключают одновременное равенство . На рисунках 2, 3 разрывные бидуги показаны красной штрих-пунктирной линией.
С учётом этих трёх вырожденных бидуг через любую точку плоскости с выколотыми полюсами и проходит единственная бидуга . Именно, через точку проходит бидуга с параметром
где .
Структура семейства
В семействе бидуг выделим, в зависимости от значения параметра следующие подсемейства невырожденных бидуг:
(в[4], Property 2, подсемейства и названы, соответственно, main subfamily и complementary subfamily).
На рисунках 2, 3, 4 бидуги, принадлежащие подсемействам , и показаны, соответственно, коричневым, синим и зелёным цветом.
Бидуги подсемейства — короткие. Их кривизна либо возрастает (если ), либо убывает (если ):
Они заключены внутри линзы — области, ограниченной вырожденными бидугами и (на рисунках область линзы затемнена). Угловая ширина линзы (со знаком) равна . ГМТ (2) есть биссектриса линзы.
Бидуги подсемейства имеют противоположный (по отношению к ) характер монотонности кривизны. Если и , то бидуги этого подсемейства — длинные. Разрывная бидуга отграничивает друг от друга бидуги подсемейств .
Подсемейство пусто, если
Подсемейство пусто, если
Переопределение граничных угловв кумулятивном смысле. Интегрирование натурального уравнения бидуги даёт непрерывную (кусочно-линейную) функцию — угол наклона касательной к кривой. При таком определении, непрерывном, её значения могут выйти за пределы , и значения на концах могут отличаться от на Определим, наряду с , кумулятивные версии граничных углов в виде , с учётом непрерывности Поправка к углу вносится, если бидуга совершает оборот вокруг точки то есть пересекает луч ; поправка к углу вносится, если бидуга совершает оборот вокруг точки (пересекая правое дополнение хорды до бесконечной прямой):
в подсемействе : ;
в подсемействе : ;
в подсемействе : .
Тогда полный поворот бидуги равен
а возрастание/убывание кривизны соответствует равенству
Nutbourne, A. W.; Martin, R. R. Differential geometry applied to curve and surface design. Vol.1: Foundations (англ.). — Ellis Horwood, 1988. — ISBN 013211822X.
Теле́сный у́гол — часть пространства, которая является объединением всех лучей, выходящих из данной точки и пересекающих некоторую поверхность. Частными случаями телесного угла являются трёхгранные и многогранные углы. Границей телесного угла является некоторая коническая поверхность. Обозначается телесный угол обычно буквой Ω.
Тригонометри́ческие фу́нкции — элементарные функции, которые исторически возникли при рассмотрении прямоугольных треугольников и выражали зависимости длин сторон этих треугольников от острых углов при гипотенузе. Эти функции нашли широкое применение в самых разных областях науки. По мере развития математики определение тригонометрических функций было расширено, в современном понимании их аргументом может быть произвольное вещественное или комплексное число.
Электродвигатель постоянного тока (ДПТ) — электрическая машина постоянного тока, преобразующая электрическую энергию постоянного тока в механическую энергию.
В квантовой механике задача о части́це в одноме́рном периоди́ческом потенциа́ле — идеализированная задача, которая может быть решена аналитически, без упрощений. При решении предполагается, что функция потенциала задана на всем бесконечном пространстве и периодична, то есть обладает трансляционной симметрией, что, вообще говоря, не выполняется для реальных кристаллов, где всегда существует как минимум один дефект — поверхность кристалла.
Интегри́рование по частя́м — один из способов нахождения интеграла. Суть метода в следующем: если подынтегральная функция может быть представлена в виде произведения двух непрерывных и гладких функций, то справедливы следующие формулы
для неопределённого интеграла
Преобразование Радона — интегральное преобразование функции многих переменных, родственное преобразованию Фурье. Впервые введено в работе австрийского математика Иоганна Радона 1917-го года.
Поворо́т (враще́ние) — движение плоскости или пространства, при котором по крайней мере одна точка остаётся неподвижной.
Гиперсфе́ра — гиперповерхность в -мерном евклидовом пространстве, образованная точками, равноудалёнными от заданной точки, называемой центром сферы.
при гиперсфера вырождается в две точки, равноудалённые от центра;
при она представляет собой окружность;
при гиперсфера является сферой.
при гиперсфера является 3-сферой.
при гиперсфера является 4-сферой.
Производная Ли тензорного поля по направлению векторного поля — главная линейная часть приращения тензорного поля при его преобразовании, которое индуцировано локальной однопараметрической группой диффеоморфизмов многообразия, порождённой полем .
Фильтр Чебышёва — один из типов линейных аналоговых или цифровых фильтров, отличительной особенностью которого является более крутой спад амплитудно-частотной характеристики (АЧХ) и существенные пульсации амплитудно-частотной характеристики на частотах полос пропускания и подавления, чем у фильтров других типов. Фильтр получил название в честь известного русского математика XIX века Пафнутия Львовича Чебышёва, так как характеристики этого фильтра основываются на многочленах Чебышёва.
Волновое уравнение в физике — линейное гиперболическое дифференциальное уравнение в частных производных, задающее малые поперечные колебания тонкой мембраны или струны, а также другие колебательные процессы в сплошных средах и электромагнетизме (электродинамике). Находит применение и в других областях теоретической физики, например при описании гравитационных волн. Является одним из основных уравнений математической физики.
Сферические функции представляют собой угловую часть семейства ортогональных решений уравнения Лапласа, записанную в сферических координатах. Они широко используются для изучения физических явлений в пространственных областях, ограниченных сферическими поверхностями и при решении физических задач, обладающих сферической симметрией. Сферические функции имеют большое значение в теории дифференциальных уравнений в частных производных и теоретической физике, в частности в задачах расчёта электронных орбиталей в атоме, гравитационного поля геоида, магнитного поля планет и интенсивности реликтового излучения.
Треуго́льник — геометрическая фигура, образованная тремя отрезками, которые соединяют три точки, не лежащие на одной прямой. Указанные три точки называются вершинами треугольника, а отрезки — сторонами треугольника. Часть плоскости, ограниченная сторонами, называется внутренностью треугольника: нередко треугольник рассматривается вместе со своей внутренностью.
Тео́рия автомати́ческого управле́ния (ТАУ) — научная дисциплина, которая изучает процессы автоматического управления объектами разной физической природы. При этом при помощи математических средств выявляются свойства систем автоматического управления и разрабатываются рекомендации по их проектированию.
Суперэллипсоид — геометрическое тело, поперечными сечениями которого являются суперэллипсы с одним и тем же показателем степени r, а вертикальные сечения — суперэллипсы с одним и тем же показателем степени t. Некоторые суперэллипсоиды являются суперквадриками, однако ни одно из этих семейств не является подмножеством другого.
Тороидальная система координат — ортогональная система координат в пространстве, координатными поверхностями которой являются торы, сферы и полуплоскости. Данная система координат может быть получена посредством вращения двумерной биполярной системы координат вокруг оси, равноудалённой от фокусов биполярной системы.
Теорема Фогта устанавливает соотношения между граничными углами плоской кривой с монотонно изменяющейся кривизной (спиральной дуги) в зависимости от возрастания / убывания кривизны.
Изучение геодезических на эллипсоиде возникло в связи с задачами геодезии, а именно с обработкой сетей триангуляции. Фигура Земли хорошо описывается эллипсоидом вращения, слегка сплющенной сферой. Геодезическая это кратчайший путь между двумя точками на кривой поверхности, на плоскости он обращается в прямую. Таким образом, обработка сети триангуляции на эллипсоиде использует ряд задач сфероидической тригонометрии.
В теории многих тел термин функция Грина иногда используется как синоним корреляционной функции, но относится к корреляторам операторов поля или операторам рождения и уничтожения.
Собственные (свободные) элементы орбиты — параметры, характеризующие орбиту небесного тела при его движении под воздействием возмущений. Собственные элементы практически не меняются со временем, в отличие от оскулирующих элементов, которые непостоянны и в каждый момент времени определяются как обычные элементы орбиты в предположении, что возмущения отсутствуют. Таким образом, собственные элементы являются непосредственными характеристиками орбиты тела, не изменёнными внешними факторами.
Эта страница основана на статье Википедии. Текст доступен на условиях лицензии CC BY-SA 4.0; могут применяться дополнительные условия. Изображения, видео и звуки доступны по их собственным лицензиям.