
Дезоксирибонуклеи́новая кислота́ (ДНК) — макромолекула, обеспечивающая хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования организмов. Молекула ДНК хранит биологическую информацию в виде генетического кода, состоящего из последовательности нуклеотидов. ДНК содержит информацию о структуре различных видов РНК и белков.
Генетическая инжене́рия — совокупность приёмов, методов и технологий получения рекомбинантных РНК и ДНК, выделения генов из организма (клеток), осуществления манипуляций с генами, введения их в другие организмы и выращивания искусственных организмов после удаления выбранных генов из ДНК. Генетическая инженерия не является наукой в широком смысле, но является инструментом биотехнологии, используя методы таких биологических наук, как молекулярная и клеточная биология, генетика, микробиология, вирусология.

Ген — в классической генетике — наследственный фактор, который несёт информацию об определённом признаке или функции организма, и который является структурной и функциональной единицей наследственности. В таком качестве термин «ген» был введён в 1909 году датским ботаником, физиологом растений и генетиком Вильгельмом Йоханнсеном.

Транспозоны — участки ДНК организмов, способные к передвижению (транспозиции) и размножению в пределах генома. Транспозоны также известны под названием «прыгающие гены» и являются примерами мобильных генетических элементов.

Метилирование ДНК — это модификация молекулы ДНК без изменения самой нуклеотидной последовательности ДНК, что можно рассматривать как часть эпигенетической составляющей генома.
Трансге́нный органи́зм — живой организм, в геном которого искусственно введён ген, который не может быть приобретён при естественном скрещивании.

Антисмысловы́е РНК — одноцепочечные РНК, которые комплементарны мРНК, транскрибируемой в клетке, или гену-мишени. Механизмы действия антисмысловых РНК весьма разнообразны, они могут как подавлять, так и активировать экспрессию гена-мишени. Природные антисмысловые РНК есть и у прокариот, и у эукариот; они относятся к длинным некодирующим РНК как РНК длиной более 200 нуклеотидов. Синтетические антисмысловые РНК нашли широкое применение у исследователей в качестве инструмента для нокдауна генов. Антисмысловые РНК также находят медицинское применение.
Энхансер — небольшой участок ДНК, который после связывания с ним факторов транскрипции стимулирует транскрипцию с основных промоторов гена или группы генов. Энхансеры не обязательно находятся в непосредственной близости от генов, активность которых они регулируют, и даже не обязательно располагаются с ними на одной хромосоме. Энхансеры могут располагаться как в 5'-, так и в 3'-положении относительно матричной цепи регулируемого гена и в любой ориентации к ней. Энхансеры также могут находиться внутри интронов. Тем не менее для работы энхансера необходим его физический контакт с промотором, который осуществляется за счёт «выпетливания» ДНК между энхансером и промотором. Молекулярный механизм действия энхансера заключается в том, что он благодаря собранному на нём белковому комплексу привлекает РНК-полимеразу II и кофакторы транскрипции в область промотора.
GloFish — запатентованный коммерческий бренд, под которым продаются генетически модифицированные флуоресцирующие аквариумные рыбки. Название образовано двумя английскими словами: glow — «сияющий», «свечение» и fish — «рыба». Под таким брендом трансгенные рыбки продаются на территории Америки, но официальным производителем рыбок считается корпорация Тайконг в Тайване.

CREB — транскрипционный фактор. Он связывается с определёнными последовательностями ДНК, которые называются CRE, регулируя транскрипцию соответствующих генов.

Иммунофлуоресцентный анализ — набор иммунологических методов для качественного и количественного определения поверхностных и внутриклеточных антигенов в образцах клеточных суспензий, образцов крови, костного мозга, альвеолярных смывов, тонких тканевых срезов. Метод позволяет детально анализировать биологические образцы на присутствие определённых антигенных детерминант, характерных для определённых возбудителей или заболеваний, проводить количественную оценку как поверхностных, так и внутриклеточных белков и рецепторов. Исследование и оценка может выполняться вручную при помощи флюоресцентного микроскопа или автоматизировано с использованием проточного цитометра или микрочипового цитометра. Возможно применение конфокального микроскопа и роботизированного флюоресцентного микроскопа в сочетании с программной системой обработки изображений. Имеющиеся в настоящее время автоматизированные технологии позволяют анализировать в одном образце примерно 50 различных антигенов с использованием набора различных флюоресцентных маркеров в формате высокоинформативной микроскопии и цитометрии и примерно вдвое меньшем максимальным набором антигенов с использованием современной проточной цитометрии или конфокальной микроскопии. Основными практическими приложениями являются онкология, микробиология, клеточная биология, генетика, фармакология и др.

Генетически модифицированная пища — продукты питания, полученные из генетически модифицированных организмов (ГМО) — растений или животных. Продукты, которые получены при помощи генетически модифицированных организмов, включая микроорганизмы, или в состав которых входит хоть один компонент, полученный из продуктов, содержащих ГМО, также могут считаться генетически модифицированными, в зависимости от законодательства конкретной страны.

Флуоресценция нашла широкое применение в различных прикладных биологических и биомедицинских исследованиях. Это физическое явление, суть которого заключается в кратковременном поглощении кванта света флюорофором с последующей быстрой эмиссией другого кванта, который имеет свойства, отличные от исходного. Много направлений в биофизике, молекулярной и клеточной биологии возникли и развиваются именно благодаря внедрению новых методов, базирующихся на флуоресценции. Стоит отметить несколько примеров.

Cas9 — это управляемая при помощи РНК-гидов эндонуклеаза, связанная с адаптивной иммунной системой CRISPR у ряда бактерий, в частности Streptococcus pyogenes. S. pyogenes использует Cas9 для запоминания, последующей проверки и разрезания чужеродной ДНК, например, ДНК бактериофагов или плазмид.
Гистондеацетила́за 4 — белок, кодируемый у человека геном HDAC4, расположенным на 2-й хромосоме. Как и все ферменты группы гистондеацетилаз, близкой к сиртуинам, гистондеацетилаза 4 катализирует удаление ацетильных групп с остатков лизина в N-концевой части коровых гистонов, что изменяет структуру хроматина. Деацетилирование гистонов является одним из механизмов транскрипционной и эпигенетической регуляции, оказывает влияние на ход клеточного цикла и участвует в регуляции развития. Работа HDAC4 регулируется путём различных посттрансляционных модификаций и взаимодействий с разнообразными белками, иногда тканеспецифичными. Нарушение работы HDAC4 приводит к развитию многих заболеваний, в том числе раковых, поэтому ингибиторы HDAC4 могут иметь важное медицинское применение.
STARR-Seq — метод анализа энхансерной активности одновременно миллионов последовательностей ДНК из геномов произвольных организмов. STARR-seq обладает высокой производительностью и может служить для полногеномного поиска и количественной оценки активности энхансеров.
Искусственная бактериальная хромосома — векторная система на основе F-плазмиды E. coli, участков cos фага лямбда и loxP фага Р1, используемая для клонирования длинных последовательностей ДНК. F-плазмида кодирует гены, регулирующие репликацию и контролирующие копийность. По участку loxP плазмидная ДНК может быть расщеплена белком Cre фага Р1, по cos-участку — соответствующим ферментом фага лямбда. Схожая векторная система под названием PAC была сделана на основе бактериальной P1-плазмиды из ДНК фага P1.
Система GAL4/UAS — это биохимический метод, который используется для изучения экспрессии генов и их функций в различных модельных организмах, в основном в фруктовых мушках Drosophila. Эта система также может быть адаптирована для исследования влияния агонистов и антагонистов на различные рецепторы в клеточных линиях. Система GAL4/UAS была разработана Андреа Брэнд и Норбертом Перимоном в 1993 году и является мощным инструментом для изучения экспрессии генов. Данная система состоит из двух частей: ген GAL4, кодирующий дрожжевой транскрипционный активатор GAL4 и энхансера UAS, который активируется фактором GAL4 и запускает транскрипцию генов под его контролем.
Эпигено́мика — раздел молекулярной биологии, изучающий совокупность эпигенетических модификаций генетического материала клетки с помощью высокопроизводительных методов. Эпигеномика аналогична геномике и протеомике, которые изучают геном и протеом клетки, соответственно.
Фаг P1 — умеренный бактериофаг, поражающий кишечную палочку и некоторые другие бактерии. При прохождении лизогенного цикла геном фага существует в виде плазмиды в бактерии, в отличие от других фагов, которые интегрируются в ДНК хозяина. P1 имеет икосаэдрическую головку, содержащую ДНК, прикреплённую к сократительному хвосту с шестью хвостовыми волокнами. Фаг P1 привлёк интерес исследователей, потому что его можно использовать для переноса ДНК из одной бактериальной клетки в другую в процессе, известном как трансдукция. При репликации во время своего литического цикла он захватывает фрагменты хромосомы хозяина. Если полученные вирусные частицы используются для заражения другого хозяина, захваченные фрагменты ДНК могут быть интегрированы в геном нового хозяина. Этот метод генной инженерии in vivo широко использовался в течение многих лет и используется до сих пор, хотя и в меньшей степени. P1 также можно использовать для создания производного от P1 вектора клонирования искусственной хромосомы, который может нести относительно большие фрагменты ДНК. P1 кодирует сайт-специфическую рекомбиназу Cre, которая широко используется для проведения клеточно-специфичной или специфичной по времени рекомбинации ДНК путем фланкирования ДНК-мишени сайтами loxP.