Евкли́дово простра́нство в изначальном смысле — это пространство, свойства которого описываются аксиомами евклидовой геометрии. В этом случае предполагается, что пространство имеет размерность, равную 3, то есть является трёхмерным.

Фортра́н — первый язык программирования высокого уровня, получивший практическое применение, имеющий транслятор и испытавший дальнейшее развитие. Создан в период с 1954 по 1957 год группой программистов под руководством Джона Бэкуса в корпорации IBM. Название Fortran является сокращением от FORmula TRANslator. Фортран широко используется в первую очередь для научных и инженерных вычислений. Одно из преимуществ современного Фортрана — большое количество написанных на нём программ и библиотек подпрограмм.

MATLAB — пакет прикладных программ для решения задач технических вычислений. Пакет используют более миллиона инженерных и научных работников, он работает на большинстве современных операционных систем, включая Linux, macOS, Solaris и Windows.

Ве́ктор — в простейшем случае математический объект, характеризующийся величиной и направлением. Например, в геометрии и в естественных науках вектор есть направленный отрезок прямой в евклидовом пространстве.

Скаля́рное произведе́ние — результат операции над двумя векторами, являющийся скаляром, то есть числом, не зависящим от выбора системы координат. Используется в определении длины векторов и угла между ними.

Векторное произведение двух векторов в трёхмерном евклидовом пространстве — вектор, перпендикулярный обоим исходным векторам, длина которого численно равна площади параллелограмма, образованного исходными векторами, а выбор из двух направлений определяется так, чтобы тройка из по порядку стоящих в произведении векторов и получившегося вектора была правой. Векторное произведение коллинеарных векторов считается равным нулевому вектору.

Ве́кторное по́ле — это отображение, которое каждой точке рассматриваемого пространства ставит в соответствие вектор с началом в этой точке. Например, вектор скорости ветра в данный момент времени различен в разных точках и может быть описан векторным полем.
Массив — структура данных, хранящая набор значений, идентифицируемых по индексу или набору индексов, принимающих целые значения из некоторого заданного непрерывного диапазона. Одномерный массив можно рассматривать как реализацию абстрактного типа данных — вектор. В некоторых языках программирования массив может называться также таблица, ряд, вектор, матрица.
AltiVec — набор SIMD (векторных) инструкций для работы с плавающей запятой и целочисленной арифметикой, разработанный и принадлежащий Apple Computer, IBM и Motorola. AltiVec реализован в различных версиях процессоров PowerPC, как производства Motorola (G4), так и производства IBM (G5).

Цифровой сигнальный процессор (англ. digital signal processor, DSP, цифровой процессор обработки сигналов — специализированный микропроцессор, предназначенный для обработки оцифрованных сигналов.
Оптимизация — модификация системы для улучшения её эффективности. Система может быть одиночной компьютерной программой, цифровым устройством, набором компьютеров или даже целой сетью.
Параллельные вычислительные системы — физические компьютерные, а также программные системы, реализующие тем или иным способом параллельную обработку данных на многих вычислительных узлах.

Суперскалярный процессор — процессор, поддерживающий так называемый параллелизм на уровне инструкций за счёт включения в состав его вычислительного ядра нескольких одинаковых функциональных узлов. Планирование исполнения потока инструкций осуществляется динамически вычислительным ядром.

Векторный процессор — это процессор, в котором операндами некоторых команд могут выступать упорядоченные массивы данных — векторы. Отличается от скалярных процессоров, которые могут работать только с одним операндом в единицу времени. Абсолютное большинство процессоров является скалярным или близким к нему. Векторные процессоры были распространены в сфере научных вычислений, где они являлись основой большинства суперкомпьютеров начиная с 1980-х до 1990-х. Но резкое увеличение производительности и активная разработка новых процессоров привели к вытеснению векторных процессоров из сферы повседневных процессоров.

Динамическим называется массив, размер которого, при необходимости, может меняться во время исполнения программы. Для изменения размера динамического массива язык программирования, поддерживающий такие массивы, должен предоставлять встроенную функцию или оператор. Динамические массивы дают возможность более гибкой работы с данными, так как позволяют не прогнозировать хранимые объёмы данных, а регулировать размер массива в соответствии с реально необходимыми объёмами. В отличие от динамических массивов существуют статические массивы и массивы переменной длины. Размер статического массива определяется на момент компиляции программы. Размер массива переменной длины определяется во время выполнения программы. Отличием динамического массива от массива переменной длины является автоматическое изменение размеров, что не трудно реализуется в случаях его отсутствия, поэтому часто не различают массивы переменной длины с динамическими массивами.
Многопроцессорность — использование пары или большего количества физических процессоров в одной компьютерной системе.
Таксономия (Классификация) Флинна — общая классификация архитектур ЭВМ по признакам наличия параллелизма в потоках команд и данных. Была предложена Майклом Флинном в 1966 году и расширена в 1972 году.
PDL — набор векторных расширений для языка программирования Perl 5-й версии. Предназначен для научных расчётов и иных задач, связанных с обработкой больших объёмов данных, в том числе: обработка изображений, компьютерное моделирование физических систем.

В параллельных компьютерных архитектурах систолический массив представляет собой однородную сеть тесно связанных блоков обработки данных (DPU), называемых ячейками или узлами. Каждый узел независимо и параллельно вычисляет частичный результат как функцию данных, полученных от его вышестоящих соседей, сохраняет результат внутри себя и передает его нижестоящим узлам. Систолические массивы были впервые использованы в Colossus Mark II в 1944 году, одном из первых компьютеров, использовавшихся для взлома немецких шифров Лоренца. Из-за секретности компьютеров Colossus систолические массивы были независимо заново открыты Х. Т. Кунгом и Чарльзом Лейзерсоном, которые описали массивы для множества вычислений плотной линейной алгебры для ленточных матриц. Ранние применения включают вычисление наибольших общих делителей целых чисел и многочленов. Иногда их классифицируют как архитектуры с несколькими инструкциями и одними данными (MISD) согласно таксономии Флинна, но эта классификация вызывает сомнения, поскольку можно предложить убедительные аргументы для выделения систолических массивов в отдельную группу, отличную от любой из четырех категорий Флинна: SISD, SIMD, MISD, MIMD, как это обсуждается позже в этой статье.