Взаимодействия нутриентов

Перейти к навигацииПерейти к поиску

Взаимодействия микронутриентов — взаимодействие между витаминами и минеральными веществами в процессе их усвоения организмом.

Микронутриенты (витамины, макро- и микроэлементы) — это незаменимые компоненты питания человека, поскольку необходимы для протекания многочисленных биохимических реакций в организме. Микронутриенты являются химически и физиологически активными веществами, которые способны взаимодействовать с другими веществами, а также друг с другом. Эти взаимодействия могут привести к повышению или снижению эффекта от приема витаминно-минеральных комплексов.[1]

Виды взаимодействий микронутриентов

Под взаимодействием лекарств или биологически активных веществ, в том числе витаминов, макро- и микроэлементов, понимают случаи, когда одновременное применение двух и более препаратов дают эффект, отличающийся от такового вследствие употребления каждого из них в отдельности.[2]

Известны следующие виды взаимодействий микронутриентов:

  • Фармацевтические взаимодействия — физико-химические реакции микронутриентов при производстве, хранении препарата и в просвете кишечника.
  • Фармакокинетические взаимодействия — взаимодействия между микронутриентами при всасывании; такие взаимодействия могут привести к уменьшению или увеличению скорости и полноты абсорбции.
  • Фармакодинамическое взаимодействие — влияние одного витамина, или макро-, или микроэлемента на процесс возникновения и реализации фармакологического эффекта другого микронутриента.[1]

В общем виде взаимодействие витаминов, макро- и микроэлементов, как и других биологически активных веществ, может носить характер синергизма или антагонизма. Синергизм — усиление конечного эффекта от приема препарата. Синергизм может выражаться либо простым суммированием эффектов (аддитивное действие), либо потенцированием (общий эффект превышает простое сложение эффектов каждого из компонентов). Антагонизм — ослабление или исчезновение фармакологического эффекта.[2]

Синергизм химических элементов в желудочно-кишечном тракте предполагает возможность следующих типов взаимодействия:

  • непосредственное взаимодействие элементов, когда уровень абсорбции определяется их оптимальным соотношением в рационе;
  • опосредованное взаимодействие через процессы фосфорилирования в стенке кишечника и активность пищеварительных ферментов;
  • непрямое взаимодействие путём стимуляции роста и активности микрофлоры в желудке и кишечнике.

На уровне тканевого и клеточного метаболизма также возможны разные типы синергического взаимодействия:

  • прямое взаимодействие элементов в структурных процессах;
  • одновременное участие элементов в активном центре какого-либо фермента;
  • активирование ферментных систем и усиление синтетических процессов, требующих для своего осуществления присутствия других минеральных элементов;
  • активирование функций эндокринных органов и опосредованное влияние через гормоны на обмен других макро- или микроэлементов.[3]

Антагонизм химических элементов в желудочно-кишечном тракте предполагает возможность следующих типов взаимодействия:

  • простое химическое взаимодействие элементов;
  • адсорбция на поверхности коллоидных частиц;
  • конкуренция за вещество-переносчик ионов в кишечной стенке.

В процессе тканевого метаболизма возможны следующие типы антагонистических взаимосвязей:

  • непосредственное взаимодействие простых и сложных неорганических ионов;
  • конкуренция ионов за активные центры в ферментных формах;
  • конкуренция за связь с веществом-переносчиком в крови;
  • активирование ионами ферментных систем с противоположной функцией;
  • антагонистическое влияние ионов на один и тот же фермент;
  • смягчение ионами биотических элементов токсического влияния тяжёлых металлов, присутствующих в корме и средах организма.[4]

Примеры отрицательных взаимодействий между микронутриентами

  • Кальций и железо, попадая в организм одновременно, конкурируют за усвоение. Железо усваивается на 45 % лучше, если принимать его отдельно от кальция.[5]
  • Взаимодействие между витаминами может влиять не только на эффективность препарата, но и на его безопасность. Например, известно, что витамин В12 может усилить аллергическую реакцию на витамин В1.[2]
  • В витаминно-минеральных комплексах 10—30 % витамина B12 превращается в неактивные метаболиты. Этот процесс вызывают входящие в состав препаратов железо, медь, аскорбиновая кислота и витамин В1.[6]
  • Цинк конкурирует за усвоение с железом, кальцием, что снижает абсорбцию цинка.[1] Дефицит этих веществ приводит к задержке психомоторного развития у детей.[7]
  • Цинк и фолиевая кислота могут образовывать нерастворимые комплексы при хранении препарата, в состав которого входят эти вещества, что приводит к снижению его эффективности.[8]

В то же время абсолютно раздельный прием витаминов и макро- и микроэлементов нецелесообразен, так как имеют место и положительные взаимодействия:

  • результатом взаимодействия витамина Е и селена является усиление антиоксидантного эффекта обоих веществ;[1]
  • витамин В6 способствует усвоению магния, проникновению и удержанию магния в клетках;[1][9]
  • витамин D улучшает усвоение кальция, потенцирует усвоение кальция костной тканью;[1]
  • витамин А способствует усвоению железа. Уровень гемоглобина при совместном приеме железа и витамина А выше, чем при приеме только железа.[9]

Более полный список взаимодействий приведен в таблице, представленной ниже.

Таблица 1. Взаимодействия микронутриентов

Микронутриент Взаимодействующий микронутриент Характер взаимодействия
Витамин А Витамины Е, С Витамины Е, С защищают витамин А от окисления
Цинк Цинк необходим для метаболизма витамина А и для превращения его в активную форму
Витамин В1Витамин В6 Витамин В6 замедляет переход витамина В1 в биологически активную форму
Витамин В12 Витамин В12 усиливает аллергические реакции на витамин В1

Ион кобальта в молекуле В12 способствует разрушению витамина В1

Витамин В6 Витамин В12 Ион кобальта в молекуле В12 способствует разрушению витамина В6
Витамин В9 Цинк Цинк нарушает всасывание витамина В9 за счет образования нерастворимых комплексов
Витамин С Витамин С способствует сохранению витамина В9 в тканях
Витамин В12 Витамины В1, С, железо, медь Под действием витаминов В1, С, железа и меди витамин В12 превращается в бесполезные аналоги
Витамин Е Витамин С Витамин С восстанавливает окисленный витамин Е
Селен Селен и витамин Е усиливают антиоксидантное действие друг друга
Железо Кальций, цинк Кальций и цинк снижают усвоение железа
Витамин А Витамин А увеличивает усвоение железа. Уровень гемоглобина при совместном приеме железа и витамина А выше, чем при приеме только железа
Витамин С Витамин С увеличивает усвоение железа, усиливает всасывание железа в ЖКТ
Магний Витамин В6 Витамин В6 способствует усвоению магния, проникновению и удержанию магния в клетках
Кальций Кальций снижает усвоение магния
Кальций Витамин D Витамин D повышает биодоступность кальция, потенцирует усвоение кальция костной тканью
Цинк Цинк снижает усвоение кальция
Пальмитиновая и стеариновая жирные кислоты Пальмитиновая и стеариновая жирные кислоты отщепляются при переваривании в кишечнике и в свободном виде прочно связывают кальций, образуя пальмитат кальция и стеарат кальция (нерастворимые мыла)[10].
Цинк Витамин В9

(фолиевая кислота)

Витамин В9 нарушает всасывание цинка за счет образования нерастворимых комплексов
Кальций, железо Кальций и железо уменьшают усвоение цинка в кишечнике
Витамин В2 Витамин В2 увеличивает биодоступность цинка
Медь Цинк Цинк уменьшает усвоение меди
Марганец Кальций, железо Кальций и железо ухудшают усвоение марганца
Хром Железо Железо снижает усвоение хрома
Молибден Медь Медь снижает усвоение молибдена

Взаимодействия микронутриентов и лекарств

Некоторые лекарственные препараты взаимодействуют с витаминами и макро- и микроэлементами, нарушая их всасывание, утилизацию либо повышая их экскрецию. Взаимодействие микронутриентов и лекарственных препаратов представлено в таблице 2.

Таблица 2. Взаимодействия лекарственных препаратов и микронутриентов

Лекарственное средствоМикронутриентХарактер взаимодействия
Ацетилсалициловая кислота (аспирин) Витамин В9

(фолиевая кислота)

Аспирин нарушает утилизацию фолата
Витамин СПрием больших доз аспирина ведет к усиленному выделению витамина С почками и потере его с мочой
Цинк Аспирин вымывает цинк из организма
Спиртосодержащие препараты Витамин В1Спирт препятствует нормальному всасыванию витамина В1
Витамин В9Спирт нарушает всасывание витамина В9
Пеницилламин, купримин и другие комплексообразующие соединения Витамин В6Препараты этой группы связывают и инактивируют витамин В6
Кортикостероидные гормоны (гидрокортизон и пр.) Витамин В6Кортикостероидные гормоны способствуют вымыванию витамина В6
Преднизолон (глюкокортикостероид) Кальций Преднизолон повышает выведение кальция
Антигиперлипидемические средства, антиметаболиты Витамин В9Антигиперлипидемические средства нарушают всасывание витамина В9
Метформин Витамин В12Метформин приводит к нарушению всасывания витамина В12
Железо Кальций, цинк Кальций и цинк снижают усвоение железа
Ксеникал, холестрамин, гастал Витамины A, D, E, К и бета-каротинКсеникал, холестрамин, гастал снижают и замедляют абсорбцию витаминов
Антациды Железо Антациды снижают эффективность связывания железа
Витамин В1Антациды снижают уровень витамина В1 в организме
Антибиотики Витамины В5, К и НАнтибиотики нарушают эндогенный синтез витаминов В5, К и Н
Витамин В1Антибиотики снижают уровень витамина В1 в организме
Хлорамфеникол Витамины В9, В12; железо Хлорамфеникол понижает эффективность витаминов В9, В12 и железа
Витамин В6Хлорамфеникол усиливает выведение витамина В6
Эритромицин Витамины В2, В3 (РР), В6Эритромицин усиливает выведение

витаминов В2, В3 (РР), В6

Витамины В6, В9, В12; кальций, магний Эритромицин снижает усвоение и активность микронутриентов
Тетрациклин Витамин В9Тетрациклин понижает эффективность витамина В9
Витамины В2, В9, С, К, РР; калий, магний, железо, цинк Тетрациклин усиливает выведение указанных веществ
Неомицин Витамин АНеомицин мешает усвоению витамина А
Транквилизаторы триоксазинового ряда Витамин В2Транквилизаторы подавляют утилизацию витамина В2, нарушая синтез его коферментной формы
Сульфаниламидные препараты Витамины В5, К и НСульфаниламидные препараты нарушают эндогенный синтез витаминов В5, К и Н
Витамин В1Сульфаниламидные препараты препятствуют нормальному всасыванию витамина В1
Витамин В9Сульфаниламидные препараты нарушают всасывание витамина В9

Учет взаимодействий микронутриентов. Пути решения проблемы несовместимости компонентов в комбинированных препаратах

В состав комбинированных лекарственных средств стараются не включать компоненты, которые отрицательно влияют на сохранность, усвоение или фармакологическое действие друг друга. Однако при создании витаминно-минеральных комплексов совместимость микронутриентов учитывается далеко не всегда.

Между тем в состав одной таблетки витаминно-минерального комплекса может входить более 20 активных компонентов. Для большинства из таких веществ имеются данные об их взаимодействиях между собой[11]. Следовательно, при одновременном приеме этих веществ в составе витаминно-минерального комплекса будет наблюдаться весь спектр взаимодействий: от положительных до отрицательных.

Для решения проблемы совместимости компонентов комбинированных препаратов применяются такие технологические приемы, как:

С помощью этих приемов можно изменять время распада таблетки, скорость растворения или выделения действующего вещества, место выделения и длительность нахождения в определенной зоне желудочно-кишечного тракта (над окном всасывания).

Большинство применяемых в фармацевтике технологий производства таблетированных препаратов не позволяют независимо влиять на время и место усвоения активного вещества, так как обычно препарат непрерывно продвигается по желудочно-кишечному тракту вместе с пищевым комком, или химусом. То есть задержка времени высвобождения активного вещества неизбежно сдвигает место высвобождения ниже по пищеварительному тракту[12]. Но, с другой стороны, большинство микронутриентов наилучшим образом усваивается в одной и той же зоне желудочно-кишечного тракта — проксимальном отделе тонкого кишечника[13]. Одновременное высвобождение компонентов из таблетки в данном отделе кишечника должно обеспечивать их оптимальное усвоение, но при этом не позволяет избежать взаимодействий между микронутриентами[12].

То есть при использовании технологий контролируемого высвобождения и многослойного таблетирования возможны два варианта:

  1. Компоненты комплекса высвобождаются в разных отделах ЖКТ, но это приводит к тому, что часть компонентов не высвободилась в местах оптимального усвоения, в результате чего снижается степень их усвоения.
  2. Происходит взаимодействие между микронутриентами в силу того, что для оптимального усвоения большинство из них должно одновременно высвободиться в одном и том же участке ЖКТ.

При разделении приёма микронутриентов-антагонистов во времени их помещают в разные таблетки, которые следует принимать не одновременно, а с интервалом. Чтобы компоненты, входящие в состав одной таблетки, полностью усвоились и не взаимодействовали с компонентами следующей, достаточно 4-6 часов[12].

Такой подход позволяет:

  • снизить конкуренцию за активные переносчики при всасывании;
  • избежать симптома насыщения транспортных белков;
  • предотвратить возможные нежелательные взаимодействия;
  • без увеличения дозы повысить биодоступность принятых перорально микронутриентов[9].

Если компоненты комплексного препарата должны усваиваться в разное время (но в одном месте желудочно-кишечного тракта), то альтернативы их раздельному во времени приему нет.

См. также

Примечания

  1. 1 2 3 4 5 6 Ребров В. Г., Громова О. А. Витамины, макро- и микроэлементы. М.: ГЭОТАР-Медиа, 2008. 960 c.
  2. 1 2 3 Машковский М. Д. Лекарственные средства. Пособие для врачей. М.: Новая волна, 2000
  3. Георгиевский В.И., Анненков Б.Н., Самохин В.Т. Минеральное питание животных. — Москва: Колос - 471 с., 1979.
  4. Скальная М.Г., Дубовой Р.М., Скальный А.В. Химические элементы-микронутриенты как резерв восстановления здоровья жителей России. — Оренбург: РИК ГОУ ОГУ - 239 с., 2004.
  5. Дроздов В. Н., Носкова К. К., Петраков А. В. Эффективность всасывания железа при раздельном и одновременном приеме с кальцием // Терапевт. 2007. № 9. С. 47-51.
  6. Herbert V., Drivas G., Foscaldi R., Manusselis C., Colman N., Kanazawa S., Das K., Gelernt M., Herzlich B., Jennings J. Multivitamin/mineral food supplements containing vitamin B12 may also contain analogues of vitamin B12. N Engl J Med. 1982 Jul; 22; 307 (4): 255-6.
  7. Dijkhuizen M.A, Wieringa F.T., West C.E., Martuti S., Muhilal. Effects of iron and zinc supplementation in Indonesian infants on micronutrient status and growth. J Nutr. 2001; 131: 2860-5.
  8. Shrimpton D.H. Micronutrient interactions. J. Chemist & Druggist 2004; 15 May.
  9. 1 2 3 4 Ших Е. В., Ильенко Л. И. Клинико-фармакологические аспекты применения витаминно-минеральных комплексов в педиатрии: Учебное пособие. М.: Медпрактика-М, 2008.
  10. Holt L.E., Tidwell H.C., Kirk C.M., Cross D.M., Neale S. Studies in fat metabolism: I. Fat absorption in normal infants (англ.) // J Pediatr[англ.] : journal. — 1935. — Vol. 6, no. 4. — P. 427—480.
  11. Rossander-Hulten L., Brune M., Sandstrom B., Lönnerdal B., Hallberg L. Competitive inhibition of iron absorption by manganese and zinc in humans. American Journal of Clinical Nutrition 1991; 54: 152-6.
  12. 1 2 3 Сереброва С. Ю. Взаимодействие микронутриентов при абсорбции компонентов витаминно-минеральных комплексов // Врач. 2010. № 3.
  13. Тутельян В. А., Спиричев В. Б., Суханов Б. П., Кудашева В. А. Микронутриенты в питании здорового и больного человека. М.: Колос, 2002.

Литература

  • Георгиевский В. И., Анненков Б. Н., Самохин В. Т. «Минеральное питание животных» — Москва: Колос, 1979. — 471 с.
  • Авцын А. П., Жаворонков А. А., Риш М. А., Строчкова Л. С. «Микроэлементозы человека: этиология, классификация, органопатология» — М.: Медицина, 1991.
  • Коровина Н. А. «Минеральные вещества в мультивитаминных препаратах». Фармацевтический вестник № 38 (317) от 25 ноября 2003 г.
  • Скальная М. Г., Дубовой Р. М., Скальный А. В. «Химические элементы-микронутриенты как резерв восстановления здоровья жителей России» — Оренбург: РИК ГОУ ОГУ, 2004. — 239 с. ISBN 5-7410-0198-X
  • Скальный А. В., Зайцева И. П., Тиньков А. А. «Микроэлементы и спорт: персонализированная коррекция элементного статуса спортсменов» — М.: Спорт, 2018—288 с. ISBN 978-5-9500181-9-0

Ссылки