
Ячейки Бенара или Рэлея — Бенара — возникновение упорядоченности в виде конвективных ячеек в форме цилиндрических валов или правильных шестигранных структур в слое вязкой жидкости с вертикальным градиентом температуры, то есть равномерно подогреваемой снизу.

Электри́ческий дипо́льный моме́нт (ЭДМ) — векторная физическая величина, характеризующая, наряду с полным зарядом, электрические свойства системы заряженных частиц. После полного заряда и положения системы, дипольный момент — главная характеристика конфигурации системы зарядов при наблюдении издали.
Ме́трика Шва́рцшильда — это единственное в силу теоремы Биркхофа сферически симметричное точное решение уравнений Эйнштейна без космологической константы в пустом пространстве. В частности, эта метрика достаточно точно описывает гравитационное поле уединённой невращающейся и незаряженной чёрной дыры и гравитационное поле снаружи от уединённого сферически симметричного массивного тела. Названа в честь Карла Шварцшильда, который первым её обнаружил в 1916 году.
Те́нзор эне́ргии-и́мпульса (ТЭИ) — симметричный тензор второго ранга (валентности), описывающий плотность и поток энергии и импульса полей материи и определяющий взаимодействие этих полей с гравитационным полем.
Антидеси́ттеровское простра́нство — псевдориманово многообразие постоянной отрицательной кривизны. Его можно считать псевдоримановым аналогом
-мерного гиперболического пространства. Названо как противопоставление пространству де Ситтера, обозначается обычно
.
Оператор Д’Аламбера — дифференциальный оператор второго порядка

Изгиб — в сопротивлении материалов вид деформации, при котором происходит искривление осей прямых брусьев или изменение кривизны осей кривых брусьев, изменение кривизны/искривление срединной поверхности пластины или оболочки. Изгиб связан с возникновением в поперечных сечениях бруса или оболочки изгибающих моментов. Прямой изгиб балки возникает в случае, когда изгибающий момент в данном поперечном сечении бруса действует в плоскости, проходящей через одну из главных центральных осей инерции этого сечения. В случае, когда плоскость действия изгибающего момента в данном поперечном сечении бруса не проходит ни через одну из главных осей инерции этого сечения, изгиб называется косым.
Орбита́льные элеме́нты, элеме́нты орби́ты небесного тела — набор параметров, задающих размеры и форму орбиты (траектории) небесного тела, расположение орбиты в пространстве и место расположения небесного тела на орбите.
Реше́ние Ке́рра — Нью́мена — точное решение уравнений Эйнштейна, описывающее невозмущённую электрически заряженную вращающуюся чёрную дыру без космологического члена. Астрофизическая значимость решения неясна, так как предполагается, что встречающиеся в природе коллапсары не могут быть существенно электрически заряжены.
Для большинства пронумерованных астероидов известны всего несколько физических параметров. Всего несколько сотен астероидов имеют собственные страницы в Википедии, на которых содержится название, обстоятельства открытия, таблица элементов орбиты и ожидаемые физические характеристики.
Зави́хрeнность — свойство движения жидкости или газа, при котором в среде существуют «вихри» — вращающиеся элементы объёма. Количественной мерой завихрeнности служит ротор скорости
; ω называют псевдовектором вихря или просто завихрeнностью. Движение с ненулевой завихрeнностью называется вихревым движением, в отличие от потенциального — безвихревого движения.

Спонта́нное наруше́ние симме́три́и — способ нарушения симметрии физической системы, при котором исходное состояние и уравнения движения системы инвариантны относительно некоторых преобразований симметрии, но в процессе эволюции система переходит в состояние, для которого инвариантность относительно некоторых преобразований начальной симметрии нарушается. Спонтанное нарушение симметрии всегда связано с вырождением состояния с минимальной энергией, называемого вакуумом. Множество всех вакуумов имеет начальную симметрию, однако каждый вакуум в отдельности — нет. Например, шарик в жёлобе с двумя ямами скатывается из неустойчивого симметричного состояния в устойчивое состояние с минимальной энергией либо влево, либо вправо, разрушая при этом симметрию относительно изменения левого на правое.
Статическая изотропная метрика — это метрика, определяющая статическое изотропное гравитационное поле. Частным случаем этой метрики является метрика Шварцшильда, на случай пустого пространства-времени.

Виртуальная чёрная дыра — гипотетический объект квантовой гравитации: чёрная дыра, возникшая в результате квантовой флуктуации пространства-времени. Является одним из примеров так называемой квантовой пены и гравитационным аналогом виртуальных электрон-позитронных пар в квантовой электродинамике.

Модель Удзавы — Лукаса — двухсекторная модель эндогенного экономического роста в условиях совершенной конкуренции, показывающая возможность существования устойчивого экономического роста, обусловленного внешними эффектами от накопления персонифицированного человеческого капитала в секторе образования. В модели показано, что решения экономических агентов об уровне образования могут быть источником устойчивого экономического роста наряду с научно-техническим прогрессом. Модель Удзавы — Лукаса вклад в изучение человеческого капитала и внешних эффектов от него. Первоначальная версия модели была разработана Хирофуми Удзавой в 1965 году, которая затем была существенно дополнена Робертом Лукасом в 1988 году.

Конические координаты — трёхмерная ортогональная система координат, состоящая из концентрических сфер и двумя семействами перпендикулярных конусов, направленных вдоль осей z и x.

Модель распространения технологий — трёхсекторная модель эндогенного экономического роста в условиях монополистической конкуренции, показывающая возможность существования устойчивого экономического роста, обусловленного поведенческими факторами, а также возможность конвергенции, обусловленной распространением (заимствованием) технологий. В модели обосновано устойчивое различие в процентных ставках между развитыми и развивающимися странами. Разработана в 1995 году Робертом Барро и Хавьером Сала-и-Мартином.

Изгиб пластин в теории упругости относится к расчёту деформаций в пластинах, под действием перпендикулярных к плоскости пластины внешних сил и моментов. Величину отклонения можно определить, решив дифференциальные уравнения соответствующей теории пластин в зависимости от допущений на малость тех или иных параметров. По этим прогибам можно рассчитать напряжения в пластине. При известных напряжениях можно использовать теорию разрушения, чтобы определить, нарушение целостности плиты при данной нагрузке. Деформация пластины является функцией двух координат, поэтому теория пластин формулируется в общем случае в терминах дифференциальных уравнений в двумерном пространстве. Также считается, что пластина изначально имеет плоскую форму.

Волноводной модой принято называть электромагнитные колебания определённого типа внутри планарной структуры обладающей свойствами, схожими с волноводами, по аналогии с волновыми модами. Иными словами это часть излучения, распространяющаяся в модифицированном приповерхностном слое материала под определенным углом.