Волны Лява имеют горизонтальную поляризацию; именно, в однородной изотропной среде смещение частиц в этой волне перпендикулярно вектору скорости. Если сагиттальную плоскость задать в плоскости (x, z) с осью z, направленной вглубь материала, то они описываются плоской волной с частотой ω вида
где kt — волновое число, A — амплитуда. Это объёмное решение обычно не представляет интереса. Если полупространство, заполненное однородной изотропной средой, покрыто тонким слоем материала со скоростью звука меньшей, чем в объёме, то возникает поверхностная волна с затухающей амплитудой[2].
Изотропная среда
В случае изотропной, однородной и идеально упругой среды, заполняющей полупространство z>0, с плотностью ρi, уравнение движения для смещений U можно записать в виде[2]
(1)
где для поперечной волны U=(0,Uy,0), индекс i пробегает значения 1 и 2 для тонкого слоя материала толщиной h и для объёмного материала, заполняющего пространство; z>h.
Полное решение этого уравнения задаётся в виде
(2.1)
(2.2)
где , . Из граничных условий отсутствия напряжений на границе двух сред и непрерывности касательных смещений напряжений на поверхности можно получить систему линейных однородных уравнений для амплитуд A, B, C, которая имеет нетривиальное решение при равенстве определителя системы нулю[3]:
(3)
которое имеет множество решений. Амплитуды смещений описываются выражением:
(4.1)
(4.2)
Когда скорость звука в поверхностном слое меньше, чем в объёме, то уравнение (3) имеет действительные решения, лежащие в области . Этих корней тем больше, чем больше произведение . В пределе малой толщины существует только одна волна Лява[4]:
(5.1)
(5.2)
(5.3)
(5.4)
Примечания
↑Love A. E. H. Some problems of geodynamics. First published in 1911 by the Cambridge University Press and published again in 1967 by Dover, New York, USA. (Chapter 11: Theory of the propagation of seismic waves).
Викторов И. А. . Звуковые поверхностные волны в твёрдых телах. — М.: Наука, 1981. — 287 с.
Парийский Н. Н., Перцев Б. П. Об определении числа Лява по приливным изменениям вращения сжимаемой Земли // Изв. АН СССР. Физика Земли. — 1972. — № 3. — С. 11—14.
Волна́ — изменение некоторой совокупности физических величин, которое способно перемещаться, удаляясь от места их возникновения, или колебаться внутри ограниченных областей пространства.
Интерференция волн — взаимное увеличение или уменьшение результирующей амплитуды двух или нескольких когерентных волн при их наложении друг на друга. Сопровождается чередованием максимумов (пучностей) и минимумов (узлов) интенсивности в пространстве. Результат интерференции зависит от разности фаз накладывающихся волн.
Уравне́ния Ма́ксвелла — система уравнений в дифференциальной или интегральной форме, описывающих электромагнитное поле и его связь с электрическими зарядами и токами в вакууме и сплошных средах. Вместе с выражением для силы Лоренца, задающим меру воздействия электромагнитного поля на заряженные частицы, эти уравнения образуют полную систему уравнений классической электродинамики, называемую иногда уравнениями Максвелла — Лоренца. Уравнения, сформулированные Джеймсом Клерком Максвеллом на основе накопленных к середине XIX века экспериментальных результатов, сыграли ключевую роль в развитии представлений теоретической физики и оказали сильное, зачастую решающее влияние не только на все области физики, непосредственно связанные с электромагнетизмом, но и на многие возникшие впоследствии фундаментальные теории, предмет которых не сводился к электромагнетизму.
Стоя́чая волна́ — явление интерференции волн, распространяющихся в противоположных направлениях, при котором перенос энергии ослаблен или отсутствует.
Пове́рхностный эффе́кт, скин-эффект — эффект уменьшения амплитуды электромагнитных волн по мере их проникновения вглубь проводящей среды. В результате этого эффекта, например, переменный ток высокой частоты при протекании по проводнику распределяется не равномерно по сечению, а преимущественно в поверхностном слое.
Двойно́е лучепреломле́ние или двулучепреломле́ние — оптическое свойство анизотропных материалов, в которых показатель преломления зависит от направления распространения света. В таких материалах может наблюдаться эффект расщепления луча света на две составляющие, когда при попадании в материал образуется не один, а два преломленных луча с разным направлением и поляризацией.
Волновое уравнение в физике — линейное гиперболическое дифференциальное уравнение в частных производных, задающее малые поперечные колебания тонкой мембраны или струны, а также другие колебательные процессы в сплошных средах и электромагнетизме (электродинамике). Находит применение и в других областях теоретической физики, например при описании гравитационных волн. Является одним из основных уравнений математической физики.
Пове́рхностные акусти́ческие во́лны (ПАВ) — упругие волны, распространяющиеся вдоль поверхности твёрдого тела или вдоль границы с другими средами. ПАВ подразделяются на два типа: с вертикальной поляризацией и с горизонтальной поляризацией.
Во́лны Рэле́я — поверхностные акустические волны. Названы в честь Рэлея, теоретически предсказавшего их в 1885 году.
Космологические модели — модели, описывающие развитие Вселенной как целого.
Монохроматическая волна — модель в физике, удобная для теоретического описания явлений волновой природы, означающая, что в спектр волны входит всего одна составляющая по частоте.
Ленгмю́ровские солито́ны (кавито́ны) — вид солитонов в плазме, представляющих собой устойчивые уединённые области локализации ленгмюровских волн, распространяющиеся в пространстве без изменений формы.
Р-волны — упругие продольные волны, вызывающие колебания элементарных частиц упругой среды в направлении распространения волны и создающие в среде объёмные деформации сжатия—растяжения(Рисунок 1). Самые быстрые среди объёмных волн, поэтому получили название «P-волны» от латинского «prima» — первичные. Способны распространятся в твердых телах, жидкостях и газах.
S-волны представляют собой тип упругих волн. Название S-волны связано с английским «shear waves» — сдвиговые волны или волна сдвига. Так как модуль сдвига в жидкостях и газах равен нулю, то S-волны могут проходить только через твёрдые тела. В случаях, когда упругость не проявляется, в них распространяются вязкие волны.
Диспе́рсия волн — в теории волн различие фазовых скоростей линейных волн в зависимости от их частоты. Дисперсия волн приводит к тому, что волновое возмущение произвольной негармонической формы претерпевает изменения (диспергирует) по мере его распространения.
Норма́льные волны, или со́бственные во́лны, — гармонические волны, которые могут существовать в некоторой линейной динамической системе с постоянными не обязательно однородными распределёнными параметрами в случае пренебрежимо малого поглощения (диссипации) и рассеивания энергии волны.
Гауссов пучок — пучок электромагнитного излучения, в котором распределение электрического поля и излучения в поперечном сечении хорошо аппроксимируется функцией Гаусса. Когерентный световой пучок с гауссовым распределением поля имеет фундаментальное значение в теории волновых пучков. Этот пучок называют основной модой в отличие от других мод более высокого порядка.
Вынужденное рассеяние Мандельштама-Бриллюэна (ВРМБ) – это процесс неупругого рассеяния света на акустических фононах, генерируемых за счет взаимодействия падающей и стоксовой волн, при этом рассеянное излучение играет активную роль и лавинообразно нарастает. В системах оптической связи ВРМБ может быть вредным эффектом. В то же время оно может использоваться в ВРМБ-лазерах и усилителях. Вынужденное рассеяние Мандельштама-Бриллюэна было открыто в 1964 г. Чиао, Стойчевым и Таунсом.
Линейная поляризация или плоскостная поляризация электромагнитного излучения — разновидность поляризации волн, при которой вектор электрического или магнитного поля ограничен строго одним направлением и строго одной плоскостью. В случае линейной поляризации её эллипс вырождается в отрезок прямой линии, определяющий положение плоскости поляризации. Вектором электрического поля определяется ориентация линейно поляризованной электромагнитной волны.
Эта страница основана на статье Википедии. Текст доступен на условиях лицензии CC BY-SA 4.0; могут применяться дополнительные условия. Изображения, видео и звуки доступны по их собственным лицензиям.