
Элемента́рная части́ца — собирательный термин, относящийся к микрообъектам в субъядерном масштабе, которые на данный момент на практике невозможно расщепить на составные части.

Ква́нтовая хромодина́мика (КХД) — калибровочная теория квантовых полей, описывающая сильное взаимодействие элементарных частиц. Наряду с электрослабой теорией, КХД составляет общепринятый теоретический фундамент физики элементарных частиц.

Кварк — бесструктурная элементарная частица и фундаментальная составляющая материи. Кварки объединяются в составные частицы, называемые адронами, наиболее стабильными из которых являются протоны и нейтроны, компоненты атомных ядер. Всё обычно наблюдаемое вещество состоит из верхних кварков, нижних кварков и электронов. Из-за явления, известного как удержание цвета, кварки никогда не встречаются изолированно; их можно найти только внутри адронов, которые включают барионы и мезоны, или в кварк-глюонной плазме. По этой причине много информации о кварках было получено из наблюдений за адронами.

Глюо́н — элементарная безмассовая частица, фундаментальный бозон, квант векторного поля, переносчик сильного взаимодействия.

Адро́ны — класс составных частиц, подверженных сильному взаимодействию. Термин предложен советским физиком Л. Б. Окунем в 1962 году, при переходе от модели Сакаты сильно взаимодействующих частиц к кварковой теории. Для элементарных частиц, не участвующих в сильных взаимодействиях, Л. Б. Окунь тогда же предложил название аденоны.

Мезо́н — адрон, имеющий нулевое значение барионного числа. В Стандартной модели мезоны — составные элементарные частицы, состоящие из равного числа кварков и антикварков. К мезонам относятся пионы, каоны (K-мезоны) и другие, более тяжёлые, мезоны.

Ма́рри (Мюрре́й) Гелл-Ма́н — американский физик-теоретик, известный своими работами по теории элементарных частиц. Лауреат Нобелевской премии (1969). Доктор (1951), эмерит-профессор Калтеха, где преподавал с 1955 по 1993 год, член Национальной академии наук США (1960) и Американского философского общества (1993), иностранный член Лондонского королевского общества (1978) и РАН (1994).

Стра́нный кварк или s-кварк — тип элементарных частиц, один из шести известных кварков. Третий по массе из всех лёгких кварков. Странные кварки входят в состав некоторых адронов. Адроны, содержащие странные кварки, называют странными частицами. Странными частицами являются каоны, странные D-мезоны, сигма-барионы и ряд других.
Это список частиц в физике элементарных частиц, включающий не только открытые, но и гипотетические элементарные частицы, а также составные частицы, состоящие из элементарных частиц.

u-кварк или верхний кварк, принадлежит к первому поколению фундаментальных фермионов, имеет заряд +(2/3)e. Как и все кварки, участвует во всех четырёх типах взаимодействий: сильном, слабом, электромагнитном, гравитационном. Вместе с d-кварками u-кварки образуют нуклоны, которые являются основными составляющими атомного ядра. Протон состоит из двух u-кварков и одного d-кварка, а нейтрон — из одного u-кварка и двух d-кварков. Существуют и другие адроны, содержащие u-кварки. Античастицей u-кварка является u-антикварк, который отличается от u-кварка знаком некоторых характеристик взаимодействий. На современном уровне знаний u-кварк является бесструктурной частицей, то есть фундаментальной, как и другие кварки и лептоны.
Гиперо́ны — семейство элементарных частиц, барионы, содержащие минимум один s-кварк, но не содержащие более тяжёлых кварков. Таким образом, у всех гиперонов ненулевая странность, но нулевые очарование и прелесть.

d-кварк или нижний кварк, принадлежит к первому поколению фундаментальных фермионов, имеет заряд −(1/3)e. Вместе с u-кварками d-кварки образуют нуклоны, которые являются основными составляющими атомного ядра. Протон состоит из двух u-кварков и одного d-кварка, а нейтрон — из одного u-кварка и двух d-кварков.

Глубоко неупругое рассеяние — процесс рассеяния с участием лептонов и адронов, при котором переданный импульс и полная энергия конечных адронов в системе их центра инерции значительно больше характерной массы адрона. Примером глубоко неупругого рассеяния является множественное рождение адронов при столкновениях электронов или мюонов высоких энергий с нуклонами. Используется для зондирования внутренностей адронов, и выяснения динамики взаимодействий на малых расстояниях. Глубоко неупругое рассеяние впервые осуществлено в 1960-е — 1970-е годы, и дало убедительное доказательство реальности кварков, которые до этого момента многие считали лишь математическим трюком.

Йоити́ро На́мбу (яп. 南部 陽一郎 Намбу Ё:итиро:, ромадзи Yoichiro Nambu; 18 января 1921 — 5 июля 2015) — японский и американский физик-теоретик, лауреат Нобелевской премии по физике 2008 года за открытие механизма спонтанного нарушения симметрии в субатомной физике.

Саката Сёити (яп. 坂田 昌一 Саката Сё:ити, 18 января 1911, Хиросима — 16 октября 1970, Нагоя) — японский учёный-физик, известный теоретической разработкой структуры атома. Предложил модель Сакаты, предшествующую кварковой модели.
Сква́рки — в физике элементарных частиц гипотетические бозоны, суперпартнёры кварков, сфермионы, чьё существование постулируется в теориях суперсимметрии. Префикс «с-» взят от слова «скалярный», как и для других суперпартнёров фермионов Стандартной модели, поскольку суперсимметрия связывает частицы, имеющие спин 1/2, со скалярными частицами. Скварки обозначаются так же, как и сопряжённые с ними кварки, но с тильдой сверху.
Мультиплет — группа рядом расположенных спектральных линий, обусловленных расщеплением энергетического уровня атома на несколько уровней с различной энергией. Существование мультиплетов обусловлено симметрией сильного взаимодействия.

Кварковая модель — в физике элементарных частиц классификационная схема адронов с точки зрения их валентных кварков — кварков и антикварков, порождающих квантовые числа адронов.
В физике частиц Модель Сакаты адронов была предшественником кварковой модели. Он предложил, чтобы протоны, нейтроны и лямбда-барион были элементарными частицами, и что из них были сделаны все другие известные адроны. Модель была предложена Сёити Саката в 1956 году. Модель успешно объяснила многие особенности адронов, но была вытеснена моделью кварков, так как понимание адронов прогрессировало. Успех модели Саката обусловлен тем, что существует соответствие между протоном, нейтроном и лямбда-барионом, а также верхними, нижними и странными кварками. Протон содержит два верхних кварка и один нижний кварк, нейтрон содержит один верхний кварк и два нижних кварка, в то время как лямбда-барион содержит один верхний кварк, один нижний кварк и один странный кварк. То есть каждый из этих барионов состоит из одного верхнего и одного нижнего кварка и дополнительного кварка: верхнего для протона, нижнего для нейтрона и странного для лямбда-бариона. Из-за этого соответствия верхним, нижним и странным кваркам модель Саката имеет ту же SU (3) -симметрию, что и кварковая модель, и может воспроизводить квантовые числа аромата всех адронов, выполненных вверх, вниз и странных кварков. Поскольку очарованного кварка не было обнаружено до 1974 года, модель Саката оставалась основным элементом физики частиц в течение некоторого времени после того, как была предложена модель кварка.

Экзотические адроны — субатомные частицы, состоящие из кварков и глюонов, которые, в отличие от «хорошо известных» адронов, таких как протоны, нейтроны и мезоны, состоят из более чем трёх валентных кварков. «Обычные» адроны содержат всего два или три кварка. Адроны с необычным содержанием валентных глюонов также считались бы экзотическими. Теоретически не существует ограничения на количество кварков в адроне, если цветовой заряд адрона белый или нейтральный по цвету.