
Я́дерная фи́зика — раздел физики, изучающий строение и свойства атомных ядер, а также их столкновения.

А́томное ядро́ — центральная часть атома, в которой сосредоточена основная его масса. Ядро заряжено положительно, заряд ядра определяет химический элемент, к которому относят атом. Размеры ядер различных атомов составляют несколько фемтометров, что более чем в 10 тысяч раз меньше размеров самого атома. Атомные ядра изучает ядерная физика.

Прото́н — одна из трёх элементарных частиц, из которых построено обычное вещество. Протоны входят в состав атомных ядер; порядковый номер химического элемента в таблице Менделеева равен количеству протонов в его ядре.

Нейтро́н — тяжёлая субатомная частица, не имеющая электрического заряда. Нейтрон является фермионом и принадлежит к группе барионов. Нейтроны и протоны являются двумя главными компонентами атомных ядер; общее название для протонов и нейтронов — нуклоны.

А́льфа-части́ца (α-частица) — положительно заряженная частица, образованная двумя протонами и двумя нейтронами; ядро атома гелия-4 (
). Впервые обнаружены Э. Резерфордом в 1899 году и он же дал название этому виду излучения по увеличению проникающей способности — альфа-, бета- и гамма-излучение. Альфа-частицы могут вызывать ядерные реакции; в первой искусственно вызванной ядерной реакции, проведённой Э. Резерфордом в 1919 году участвовали именно альфа-частицы. Поток альфа-частиц называют альфа-лучами или альфа-излучением.

Бе́та-части́цы — электроны и позитроны, которые вылетают из атомных ядер некоторых радиоактивных веществ при радиоактивном бета-распаде. Направление движения бета-частиц меняется магнитными и электрическими полями, что свидетельствует о наличии в них электрического заряда. Скорости электронов достигают 0,998 скорости света. Бета-частицы ионизируют газы, вызывают люминесценцию многих веществ, действующих на фотоплёнки. Поток бета-частиц называют бета-излучением.

Я́дерная реа́кция — процесс взаимодействия атомного ядра с другим ядром или элементарной частицей, который может сопровождаться изменением состава и строения ядра. Последствием взаимодействия может стать деление ядра, испускание элементарных частиц или фотонов. Кинетическая энергия вновь образованных частиц может быть гораздо выше первоначальной, при этом говорят о выделении энергии ядерной реакцией.
Мюо́нный ката́лиз ядерных реакций синтеза, или просто мюонный катализ — процесс, облегчающий слияние ядер, например, изотопов водорода, происходящий при участии отрицательно заряжённых мюонов. Реакция синтеза проходит при относительно низкой температуре в отличие от классического термоядерного синтеза. В настоящее время не может быть использована в термоядерном синтезе, так как невыгодна из-за высоких энергетических затрат на получение мюонов.
Я́дерная эне́ргия — энергия, содержащаяся в атомных ядрах и выделяемая при ядерных реакциях и радиоактивном распаде.

Мюо́н в стандартной модели физики элементарных частиц — неустойчивая элементарная частица с отрицательным электрическим зарядом и спином 1⁄2. Вместе с электроном, тау-лептоном и тремя сортами нейтрино классифицируется как часть лептонного семейства фермионов. Так же, как они, мюон, по-видимому, бесструктурен и не состоит из каких-то более мелких частиц. Как и все фундаментальные фермионы, мюон имеет античастицу с квантовыми числами противоположного знака, но с равной массой и спином: а̀нтимюо́н. Мюонами называют также мюоны и антимюоны в совокупности. Ниже термин «мюон» употребляется в этом значении, если не оговорено обратное.
Управляемый термоядерный синтез (УТС) — синтез более тяжёлых атомных ядер из более лёгких с целью получения энергии, который, в отличие от взрывного термоядерного синтеза, носит управляемый характер. Управляемый термоядерный синтез отличается от традиционной ядерной энергетики тем, что в последней используется реакция распада, в ходе которой из тяжёлых ядер получаются более лёгкие ядра. В основных ядерных реакциях, которые планируется использовать в целях осуществления управляемого термоядерного синтеза, будут применяться дейтерий (2H) и тритий (3H), а в более отдалённой перспективе гелий-3 (3He) и бор-11 (11B).

Ге́лий-3 — стабильный изотоп гелия. Ядро гелия-3 (гелион) состоит из двух протонов и одного нейтрона, в отличие от более тяжёлого другого стабильного изотопа — гелия-4, имеющего в составе два протона и два нейтрона.

Дейтро́н (дейто́н) — ядро изотопа водорода — дейтерия — с массовым числом A=2. Обозначается 2H, D или d.

Протон-протонный цикл — совокупность термоядерных реакций, в ходе которых водород превращается в гелий в звёздах, находящихся на главной звёздной последовательности; основная альтернатива CNO-циклу. Протон-протонный цикл доминирует в звёздах с массой порядка массы Солнца или меньше, на него приходится до 98 % выделяемой энергии.
Изото́пы ге́лия — разновидности атомов химического элемента гелия, имеющие разное содержание нейтронов в ядре. Всего известно на данный момент времени 9 изотопов, но только два из них стабильны. Природный гелий состоит из двух стабильных изотопов: 4He и гораздо более редкого 3He. Самым долгоживущим радиоизотопом является 6He с периодом полураспада 807 миллисекунд.

Ядерные реакции в звёздах являются их основным источником энергии. Они обеспечивают большое энерговыделение на единицу массы, что позволяет звёздам поддерживать высокую светимость в течение длительного времени. В этих реакциях образуется бо́льшая часть химических элементов, существующих в природе, — происходит нуклеосинтез. Протекание ядерных реакций возможно из-за высокой температуры в недрах звёзд, их темп зависит от температуры и плотности.

Фотоя́дерные реа́кции — ядерные реакции, происходящие при поглощении гамма-квантов ядрами атомов. Явление испускания ядрами нуклонов при таких реакциях называется ядерным фотоэффектом. Явление ядерного фотоэффекта было открыто Чедвиком и Гольдхабером в 1934 году и в дальнейшем подробно исследовано Боте и Вольфгангом Гентнером, а затем и Нильсом Бором.
Нейтро́нный захва́т — вид ядерной реакции, в которой ядро атома соединяется с нейтроном и образует более тяжёлое ядро:
- (A, Z) + n → + γ.

Звёздное ядро — центральная область звезды, характеризующаяся максимальной плотностью и температурой. У звезд главной последовательности ядро является областью, в которой происходит термоядерные реакции, за счёт которой звезда светится.

Первичный нуклеосинтез — совокупность процессов, которые привели к образованию химического состава вещества во Вселенной до появления первых звёзд.