Гравитацио́нные во́лны — изменения гравитационного поля, распространяющиеся подобно волнам. Излучаются движущимися массами, но после излучения отрываются от них и существуют независимо от этих масс. Математически связаны с возмущением метрики пространства-времени и могут быть описаны как «рябь пространства-времени».
Einstein@Home — проект добровольных вычислений на платформе BOINC по проверке гипотезы Эйнштейна о существовании гравитационных волн, которые были обнаружены 100 лет спустя. В ходе выполнения проекта первоначальная цель была расширена: в настоящее время проект занимается также поиском пульсаров по данным радио- и гамма-телескопов. Проект стартовал в рамках Всемирного года физики 2005 и координируется Университет Висконсина-Милуоки и Институтом гравитационной физики Общества Макса Планка, руководитель — Брюс Аллен. С целью проверки гипотезы проводится составление атласа гравитационных волн, излучаемых быстро вращающимися неосесимметричными нейтронными звездами (пульсарами), качающимися, аккрецирующими и пульсирующими звездами. Данные для анализа поступают с Лазерно-интерферометрической гравитационно-волновой обсерватории (LIGO) и GEO600. Кроме проверки общей теории относительности Эйнштейна и получения ответов на вопросы «Распространяются ли гравитационные волны со скоростью света?» и «Чем они отличаются от электромагнитных волн?», прямое обнаружение гравитационных волн будет также представлять собой важный новый астрономический инструмент. Наличие же экспериментальных доказательств отсутствия гравитационных волн известной амплитуды от известных источников поставит под сомнение саму общую теорию относительности и понимание сущности гравитации.
Дете́ктор гравитацио́нных волн — техническое устройство, предназначенное для регистрации гравитационных волн. Согласно ОТО, гравитационные волны, образующиеся, например, в результате слияния двух чёрных дыр где-то во Вселенной, вызывают чрезвычайно слабое периодическое изменение расстояний между пробными частицами вследствие колебаний самого пространства-времени. Эти колебания пробных тел и регистрирует детектор. Кроме того, такие детекторы способны измерять гравитационные возмущения геофизической природы. Так, например, на интерферометрах LIGO и VIRGO были зарегистрированы модуляции со сидерической периодичностью.
GEO600 — гравитационный телескоп, сооружённый в Ганновере (Германия). Целью проекта является регистрация гравитационных волн, образующихся, например, при столкновении чёрных дыр. Лазерный интерферометр GEO600 будет сравнивать пути, проходимые светом в двух независимых 600-метровых каналах.
MiniGRAIL — прекративший работу детектор гравитационных волн, расположенный в Голландии, в Университете Лейдена. Проект был закрыт в 2005 году.
Laser Interferometer Space Antenna — проект космического детектора гравитационных волн. Первоначально проект начинался под названием LISA как совместный проект Европейского космического агентства и НАСА. Однако в 2011 году НАСА, столкнувшись с финансовыми проблемами, объявило, что более не может участвовать в разработках LISA. Уменьшенный в размерах дизайн проекта LISA под названием New Gravitational-wave Observatory был предложен в качестве очередной большой миссии программы Cosmic Vision. В июне 2017 года в конце концов миссия была одобрена ESA.
LIGO — лазерно-интерферометрическая гравитационно-волновая обсерватория. Проект был предложен в 1992 году Кипом Торном, Рональдом Древером из Калифорнийского технологического института и Райнером Вайссом из Массачусетского технологического института. Проект финансируется американским Национальным научным фондом. Достигая по стоимости 365 миллионов долларов, этот проект является самым дорогим среди всех когда-либо финансировавшихся фондом.
Virgo — франко-итальянский детектор гравитационных волн, расположенный в Европейской гравитационной обсерватории EGO, а также одноимённая коллаборация, занимающаяся его разработкой и обслуживанием. В 2016 году в обсерватории работало 338 сотрудников. Адрес: European Gravitational Observatory, Via Edoardo Amaldi, Santo Stefano a Macerata, 56021 — Cascina (PI) — Italy.
TAMA 300 — японский детектор гравитационных волн, расположенный в кампусе Митака Национальной астрономической обсерватории Японии. Проект управляется группой изучения гравитационных волн Института изучения космических лучей (ICRR) Токийского университета. ICRR был основан в 1976 году, работы над TAMA 300 начались в 1995 году, а в настоящее время производится разработка Большого криогенного гравитационного телескопа следующего поколения.
Джо́зеф Ве́бер — американский физик. Он дал первую известную публичную лекцию о принципах работы мазеров и лазеров, а также является пионером в попытках детектирования гравитационных волн.
Телеско́п Эйнште́йна — будущий детектор гравитационных волн третьего поколения, разрабатываемый рядом европейских организаций, курируемых Европейской гравитационной обсерваторией.
KAGRA, ранее называемый LCGT — японский детектор гравитационных волн, расположенный примерно в 200 км к западу от Токио, в подземной шахте Камиока в бывшем посёлке Камиока в префектуре Гифу в Японии. Он управляется Институтом исследований космических лучей Токийского университета. Это первый в Азии детектор гравитационных волн, первый в мире, построенный под землёй, в подземной шахте, и первый в мире детектор в котором используются криогенные зеркала изготовленные из сапфира и охлаждаемые до 20 градусов выше абсолютного нуля −253,15 °C для уменьшения теплового шума.
EPTA — европейская коллаборация, объединяющая пять радиотелескопов 100-метрового класса для наблюдения массива пульсаров с целью детектировать гравитационные волны, исходящие от них. Это один из трёх массивов, работающих в данный момент с миллисекундными пульсарами, остальные два — PPTA и NANOGrav.
TOBA — новая схема детектора гравитационных волн, предложенная М. Андо и др. в 2010. Предложенный дизайн состоит из двух длинных тонких стержней, подвешенных как торсионные маятники в виде креста. Их дифференциальный угол будет сравниваться при помощи набора оптических углублений с зеркалом на каждом углублении, фиксирующим два конца каждого стержня. Такой детектор мог бы использоваться в космосе и на Земле.
Открытие гравитационных волн было выполнено путем их прямого детектирования 14 сентября 2015 года коллаборациями LIGO и VIRGO; об открытии было объявлено 11 февраля 2016 года. Результаты опубликованы в журнале Physical Review Letters и ряде последующих статей.
Гравитационно-волновая астрономия — раздел астрономии, изучающий космические объекты путём исследования их гравитационного излучения при помощи регистрации его прямого воздействия на детекторы гравитационных волн. Представляет собой активно развивающуюся область наблюдательной астрономии, использующую гравитационные волны для сбора данных об объектах, таких как нейтронные звезды и черные дыры, о таких событиях, как взрывы сверхновых, и о различных процессах, в том числе свойства ранней Вселенной вскоре после Большого взрыва.
GW151226 — гравитационно-волновой всплеск, обнаруженный гравитационно-волновой обсерваторией LIGO 25 декабря 2015 года по местному времени. 15 июня 2016 года обсерватории LIGO и Virgo сообщили, что они верифицировали сигнал. Также было объявлено, что это второй в мире выявленный сигнал гравитационных волн после GW150914.
GW170104 — гравитационно-волновой всплеск, обнаруженный гравитационно-волновой обсерваторией LIGO 4 января 2017 года, третье надёжно установленное событие такого рода за всю историю наблюдений гравитационных волн. О наблюдении события объявлено 1 июня 2017 года коллаборациями LIGO и Virgo
GW170817 — первый зарегистрированный гравитационно-волновой всплеск, произошедший в результате слияния двух нейтронных звёзд. Зарегистрирован 17 августа 2017 года в 12:41:04,4 UTC всеми тремя лазерно-интерферометрическими гравитационно-волновыми детекторами детекторной сети LIGO-Virgo. Про обнаружение этого события было официально объявлено 16 октября 2017 года в совместном пресс-релизе коллабораций LIGO Scientific Collaboration и Virgo Collaboration; одновременно вышла совместная статья коллабораций в Physical Review Letters.
GW170814 — гравитационно-волновой всплеск, обнаруженный гравитационно-волновыми обсерваториями LIGO и Virgo 14 августа 2017 года в 10:30:43 (UTC). Об обнаружении сигнала было объявлено 27 сентября 2017 года. Это четвёртое обнаружение гравитационных волн и первое обнаружение тремя детекторами, что дало более точные данные о местонахождении источника, ориентации объектов во время слияния и поляризации гравитационных волн. Полученные более точные данные хорошо согласуются с общей теорией относительности.