
Фоно́н — квазичастица, квант энергии согласованного колебательного движения атомов твёрдого тела, образующих идеальную кристаллическую решётку.
Уравнение Дира́ка — релятивистски инвариантное уравнение движения для биспинорного классического поля электрона, применимое также для описания других точечных фермионов со спином 1/2; установлено Полем Дираком в 1928 году.

Те́нзор — применяемый в математике и физике математический объект линейной алгебры, заданный на векторном пространстве конечной размерности. В физике в качестве векторного пространства обычно выступает физическое трёхмерное пространство или четырёхмерное пространство-время, а компонентами тензора являются координаты (проекции) взаимосвязанных физических величин. Использование тензоров в физике позволяет глубже понять физические законы и уравнения, упростить их запись за счёт сведения многих связанных физических величин в один тензор, а также записывать уравнения в форме, не зависящей от выбранной системы отсчёта.
Уравне́ние Шрёдингера — линейное дифференциальное уравнение в частных производных, описывающее изменение в пространстве и во времени чистого состояния, задаваемого волновой функцией, в гамильтоновых квантовых системах.

Уравне́ния Ма́ксвелла — система уравнений в дифференциальной или интегральной форме, описывающих электромагнитное поле и его связь с электрическими зарядами и токами в вакууме и сплошных средах. Вместе с выражением для силы Лоренца, задающим меру воздействия электромагнитного поля на заряженные частицы, эти уравнения образуют полную систему уравнений классической электродинамики, называемую иногда уравнениями Максвелла — Лоренца. Уравнения, сформулированные Джеймсом Клерком Максвеллом на основе накопленных к середине XIX века экспериментальных результатов, сыграли ключевую роль в развитии представлений теоретической физики и оказали сильное, зачастую решающее влияние не только на все области физики, непосредственно связанные с электромагнетизмом, но и на многие возникшие впоследствии фундаментальные теории, предмет которых не сводился к электромагнетизму.
Эффект Шубникова — де Хааза назван в честь советского физика Л. В. Шубникова и нидерландского физика В. де Хааза, открывших его в 1930 году. Наблюдаемый эффект заключался в осцилляциях магнетосопротивления плёнок висмута при низких температурах. Позже эффект Шубникова — де Гааза наблюдали в многих других металлах и полупроводниках. Эффект Шубникова — де Гааза используется для определения тензора эффективной массы и формы поверхности Ферми в металлах и полупроводниках.
Эффекти́вная ма́сса — величина, имеющая размерность массы и применяемая для удобного описания движения частицы в периодическом потенциале кристалла. Можно показать, что электроны и дырки в кристалле реагируют на электрическое поле так, как если бы они свободно двигались в вакууме, но с некой эффективной массой, которую обычно определяют в единицах массы электрона
. Эффективная масса электрона в кристалле, вообще говоря, отлична от массы электрона в вакууме и может быть как положительной, так и отрицательной.
Как и в обычных полупроводниках, в графене электронно-дырочный газ можно рассматривать как плазму, и, соответственно, ставить вопрос о том, какие волны могут наблюдаться в твёрдом теле. Благодаря отличию закона дисперсии от параболического ожидается, что и свойства волн будут другими. Плазменные волны в ДЭГ в графене теоретически рассматривались в работе.

В механике сплошной среды механическое напряжение — это физическая величина, которая выражает внутренние силы, которые соседние частицы в непрерывной среде оказывают друг на друга, а деформация — это мера изменения геометрических размеров среды. Например, когда сплошная вертикальная штанга поддерживает груз, каждая частица в штанге давит на частицы, находящиеся непосредственно под ней. Когда жидкость находится в закрытом контейнере под давлением, каждая частица сталкивается со всеми окружающими частицами. Стенки контейнера и поверхность, создающая давление, прижимаются к ним в соответствии с силой реакции. Эти макроскопические силы на самом деле являются чистым результатом очень большого количества межмолекулярных сил и столкновений между частицами в этих средах. Механическое напряжение или в дальнейшем напряжение часто обозначается строчной греческой буквой сигма σ.
Квазичастицы в графене обладают линейным законом дисперсии вблизи дираковских точек и их свойства полностью описываются уравнением Дирака. Сами дираковские точки находятся на краях зоны Бриллюэна, где электроны обладают большим волновым вектором. Если пренебречь процессами переброса между долинами, то этот большой вектор никак не влияет на транспорт в низкоэнергетическом приближении, поэтому волновой вектор, фигурирующий в уравнении Дирака, отсчитывают от дираковских точек и уравнение Дирака записывают для разных долин отдельно.
Парадо́кс Кле́йна в графе́не — прохождение любых потенциальных барьеров без обратного рассеяния под прямым углом. Эффект связан с тем, что спектр носителей тока в графене линейный и квазичастицы подчиняются уравнению Дирака для графена. Эффект предсказан теоретически в 2006 году для прямоугольного барьера.

Тензор электромагнитного поля — это антисимметричный дважды ковариантный тензор, являющийся обобщением напряжённости электрического и индукции магнитного поля для произвольных преобразований координат. Он используется для инвариантной формулировки уравнений электродинамики, в частности, с его помощью можно легко обобщить электродинамику на случай наличия гравитационного поля.
Физические свойства графена проистекают из электронных свойств атомов углерода и поэтому часто имеют нечто общее с остальными аллотропными модификациями углерода, которые были известны до него, такими как графит, алмаз, углеродные нанотрубки. Конечно, схожести больше с графитом, так как он состоит из графеновых слоёв, но без новых уникальных физических явлений и исследований других материалов и наработок физических методов анализа и теоретических подходов графен не привлёк бы специалистов из таких разных дисциплин как физика, химия, биология и физика элементарных частиц.
Тест Адлемана-Померанса-Румели — наиболее эффективный, детерминированный и безусловный на сегодняшний день тест простоты чисел, разработанный в 1983 году. Назван в честь его исследователей — Леонарда Адлемана, Карла Померанса и Роберта Румели. Алгоритм содержит арифметику в цикломатических полях.
Термоэлектрический эффект в графене представляет собой преобразование потока тепла в электричество в графене. В этом случае говорят о генерации энергии или термогенерации, но существует и обратный эффект, когда ток вызывает охлаждение материала и говорят о термоохлаждении. Впервые эффект Зеебека наблюдался в работах.
Концептуальные программы в физике — принятые в физике наиболее общие математические модели. Различные области физики имеют различные программы для моделирования состояний физических систем.
Симметрии в квантовой механике — преобразования пространства-времени и частиц, которые оставляют неизменными уравнения квантовой механики. Рассматриваются во многих разделах квантовой механики, которые включают релятивистскую квантовую механику, квантовую теорию поля, стандартную модель и физику конденсированного состояния. В целом, симметрия в физике, законы инвариантности и сохранения являются основополагающими ограничениями для формулирования физических теорий и моделей. На практике это мощные методы решения задач и прогнозирования того, что может случиться. Хотя законы сохранения не всегда дают конечное решение проблемы, но они формируют правильные ограничения и наметки к решению множества задач.

Тензор напряжений Максвелла представляет собой симметричный тензор второго порядка, используемый в классическом электромагнетизме для представления взаимодействия между электромагнитными силами и механическим импульсом. В простых случаях, таких как точечный заряд, свободно движущийся в однородном магнитном поле, легко рассчитать силы, действующие на заряд, согласно силе Лоренца. В более сложных случаях такая обычная процедура может стать непрактично сложной с уравнениями, охватывающими несколько строк. Поэтому удобно собрать многие из этих членов в тензоре напряжений Максвелла и использовать тензорную арифметику, чтобы найти ответ на поставленную задачу.
Релятивистская квантовая механика (РКМ) — раздел квантовой физики, в котором рассматриваются релятивистские квантовые законы движения микрочастиц в одночастичном приближении. Более обще, это любая ковариантная формулировка квантовой механики (КМ). Эта теория применима к массивным частицам, движущимися со всеми скоростями, вплоть до сравнимых со скоростью света c, и к безмассовым частицам. Теория применяется в физике высоких энергий, физике элементарных частиц и физике ускорителей, а также в атомной физике, квантовой химии и физике конденсированного состояния. Нерелятивистская квантовая механика в математической формулировке квантовой механики, применяется в контексте теории относительности Галилея, в частности, к квантованию уравнений классической механики путём замены динамических переменных операторами. Релятивистская квантовая механика — это квантовая механика, применяемая совместно со специальной теорией относительности (СТО). Хотя более ранние формулировки, такие как представления Шрёдингера и Гейзенберга, изначально были сформулированы в нерелятивистской форме, некоторые из них также учитывают СТО.