
Тео́рия катего́рий — раздел математики, изучающий свойства отношений между математическими объектами, не зависящие от внутренней структуры объектов.
Функтор — особый тип отображений между категориями. Его можно понимать как отображение, сохраняющее структуру. Функторы между малыми категориями являются морфизмами в категории малых категорий. Совокупность всех категорий не является категорией в обычном смысле, так как совокупность её объектов не является классом. Один из способов преодолеть подобные теоретико-множественные трудности — добавление в ZFC независимой от неё аксиомы о существовании недостижимых кардиналов.
Сопряжённые функторы — пара функторов, состоящих в определённом соотношении между собой. Понятие сопряжённых функторов и сам термин были предложены Даниэлем Каном в 1956 году. Сопряжённые функторы часто встречаются в разных областях математики.
Пучок — структура, используемая для установления отношений между локальными и глобальными свойствами или характеристиками некоторого математического объекта. Пучки играют значительную роль в топологии, дифференциальной геометрии и алгебраической геометрии, но также применяются в теории чисел, анализе и теории категорий.
В теории категорий есте́ственное преобразова́ние предоставляет способ перевести один функтор в другой, сохраняя внутреннюю структуру. Поэтому естественное преобразование можно понимать как «морфизм функторов». Эта интуиция может быть строго формализована в определении категории функторов. Естественные преобразования — наиболее базовое определение в теории категорий наряду с функторами, потому что оно появляется в большинстве её приложений.
Преде́л в теории категорий — понятие, обобщающее свойства таких конструкций, как произведение, декартов квадрат и обратный предел. Двойственное понятие копредела обобщает свойства таких конструкций, как дизъюнктное объединение, копроизведение, кодекартов квадрат и прямой предел.
Схе́ма — математическая абстракция, позволяющая связать алгебраическую геометрию, коммутативную алгебру и дифференциальную геометрию и переносить идеи из одной области в другую. В первую очередь понятие схемы позволяет перенести геометрическую интуицию и геометрические конструкции, такие как тензорные поля, расслоения и дифференциалы, в теорию колец. Исторически теория схем возникла с целью обобщения и упрощения классической алгебраической геометрии итальянской школы XIX века, занимавшейся исследованием полиномиальных уравнений.
Во многих областях математики полезную конструкцию часто можно рассматривать как «наиболее эффективное решение» определенной проблемы. Определение универсального свойства использует язык теории категорий, чтобы сделать это определение точным и изучать его теоретическими методами.
Унивалентный функтор — функтор, который инъективен на каждом множестве морфизмов с фиксированными образом и прообразом. Полный функтор — двойственное понятие — функтор, который сюръективен на каждом множестве морфизмов с фиксированным образом и прообразом.
В теории категорий функторы между двумя зафиксированными категориями образуют категорию, морфизмы в которой — естественные преобразования.
Категория запятой — специальная теоретико-категорная конструкция, позволяющая изучать морфизмы не как соотнесения объектов категории друг с другом, а как самостоятельные объекты. Строится как особая категория для произвольной пары функторов в общую категорию, описана Ловером как обобщение категорий объектов и морфизмов. Название «категория запятой» появилось из-за первоначального обозначения Ловера; впоследствии стандартное обозначение изменилось из соображений удобства, но название для конструкции сохранилось.
Категория топологических пространств — категория, объекты которой — топологические пространства, а морфизмы — непрерывные отображения, основной объект изучения категорной топологии. Стандартное обозначение —
. Является конкретной категорией, поэтому её объекты можно понимать как множества с дополнительной структурой.
Обогащённая категория в теории категорий — обобщение понятия категории, конструкция, в которой множество морфизмов между двумя объектами заменена на объект произвольной моноидальной категории. Использование такого понятия основано на наблюдении, что во многих практических приложениях множества морфизмов имеют дополнительную структуру. Для того, чтобы воспроизвести ассоциативную операцию композиции морфизмов в обычной категории, категория, из которой берутся морфизмы, должна иметь (ассоциативную) бинарную операцию с тождественным элементом, то есть как минимум иметь структуру моноидальной категории.
Абелева категория — категория, в которой морфизмы можно складывать, а ядра и коядра существуют и обладают определёнными удобными свойствами. Пример, который стал прототипом абелевой категории — категория абелевых групп. Теория абелевых категорий была разработана Александром Гротендиком для объединения нескольких теорий когомологий. Класс абелевых категорий замкнут относительно нескольких категорных конструкций; например, категория цепных комплексов с элементами из абелевой категории и категория функторов из малой категории в абелеву также являются абелевыми.
В теории категорий множества Hom позволяют определить важные функторы в категорию множеств. Эти функторы называются функторами Hom и имеют многочисленные приложения в теории категорий и других областях математики.
В теория категорий, замкнутая моноидальная категория — это категория, позволяющая брать тензорные произведения объектов, а также рассматривать объекты, соответствующие множествам морфизмов. Классический пример — категория множеств, в которой существует декартово произведение множеств, а также множество функций между двумя множествами. «Объект, соответствующий множеству морфизмов» обычно называют внутренним Hom.
Производная категория D(A) абелевой категории A представляет собой конструкцию из гомологической алгебры, введённую для уточнения и в определённом смысле упрощения теории производных функторов, определённых на A. Конструкция определяется таким образом, что объектами D(A) становятся цепные комплексы объектов из A, причем два таких комплекса считаются изоморфными, когда существует гомоморфизм между этими комплексами, индуцирующий изоморфизм гомологий этих комплексов. Затем для цепных комплексов можно определить производные функторы, уточняя понятие гиперкогомологий. Определения приводят к существенному упрощению формул, в противном случае описываемых сложными спектральными последовательностями.