
Вероя́тность — степень возможности наступления некоторого события. Когда основания для того, чтобы какое-нибудь возможное событие произошло в действительности, перевешивают противоположные основания, то это событие называют вероятным, в противном случае — маловероятным или невероятным. Перевес положительных оснований над отрицательными, и наоборот, может быть в различной степени, вследствие чего вероятность бывает большей либо меньшей. Поэтому часто вероятность оценивается на качественном уровне, особенно в тех случаях, когда более или менее точная количественная оценка невозможна или крайне затруднена. Возможны различные градации «уровней» вероятности.
Математи́ческое ожида́ние — понятие в теории вероятностей, означающее среднее значение случайной величины. В случае непрерывной случайной величины подразумевается взвешивание по плотности распределения. Математическое ожидание случайного вектора равно вектору, компоненты которого равны математическим ожиданиям компонентов случайного вектора.

Фу́нкция распределе́ния в теории вероятностей — функция, характеризующая распределение случайной величины или случайного вектора; вероятность того, что случайная величина X примет значение, меньшее х, где х — произвольное действительное число. При соблюдении известных условий полностью определяет случайную величину.
Медиа́на, или серединное значение набора чисел — число, которое находится в середине этого набора, если его упорядочить по возрастанию, то есть такое число, что половина из элементов набора не меньше него, а другая половина не больше. Другое равносильное определение: медиана набора чисел — это число, сумма расстояний от которого до всех чисел из набора минимальна. Это определение естественным образом обобщается на многомерные наборы данных и называется 1-медианой.
Распределение вероятностей — это закон, описывающий область значений случайной величины и вероятности их исхода (появления).
Пространство элементарных событий — множество
всех различных исходов случайного эксперимента.

Непреры́вное равноме́рное распределе́ние в теории вероятностей — распределение случайной вещественной величины, принимающей значения, принадлежащие некоторому промежутку конечной длины, характеризующееся тем, что плотность вероятности на этом промежутке почти всюду постоянна.
Равномерное распределение:
- Дискретное равномерное распределение — распределение, в котором случайная величина принимает конечное число значений с равными вероятностями.
- Непрерывное равномерное распределение — распределение случайной величины с постоянной плотность вероятности на интервале.

Экспоненциа́льное распределе́ние — абсолютно непрерывное распределение, моделирующее время между двумя последовательными свершениями одного и того же события.
Характеристи́ческая фу́нкция случа́йной величины́ — один из способов задания распределения. Характеристические функции могут быть удобнее в тех случаях, когда, например, плотность или функция распределения имеют очень сложный вид. Также характеристические функции являются удобным инструментом для изучения вопросов слабой сходимости. В теорию характеристических функций внесли большой вклад Ю. В. Линник, И. В. Островский, К. Р. Рао, Б. Рамачандран.
Пло́тность вероя́тности — один из способов задания распределения случайной величины. Во многих практических приложениях понятия «плотность вероятности» и «плотность (распределения) случайной величины» или «функция распределения вероятностей» фактически синонимизируются и под ними подразумевается вещественная функция, характеризующая сравнительную вероятность реализации тех или иных значений случайной переменной (переменных).

Закон больших чисел (ЗБЧ) в теории вероятностей — принцип, описывающий результат выполнения одного и того же эксперимента много раз. Согласно закону, среднее значение конечной выборки из фиксированного распределения близко к математическому ожиданию этого распределения.
Фу́нкция правдоподо́бия в математической статистике — это совместное распределение выборки из параметрического распределения, рассматриваемое как функция параметра. При этом используется совместная функция плотности либо совместная вероятность, вычисленные для данных выборочных значений.
Описательная статистика или дескриптивная статистика занимается обработкой эмпирических данных, их систематизацией, наглядным представлением в форме графиков и таблиц, а также их количественным описанием посредством основных статистических показателей.
Сигнал — материальное воплощение сообщения для использования при передаче, переработке и хранении информации.
Дифференциальная энтропия — формальное обобщение понятия информационной энтропии Шеннона для случая непрерывной случайной величины. В теории информации интерпретируется как средняя информация непрерывного источника. В случае одномерной случайной величины определяется как
бит
Дискретная случайная величина — случайная величина, множество значений которой конечно или счётно. Значения дискретной случайной величины не содержат какой-либо непрерывный интервал на числовой прямой.