Термодина́мика — раздел физики, изучающий наиболее общие свойства макроскопических систем и способы передачи и превращения энергии в таких системах.

Физи́ческая хи́мия — раздел химии, наука об общих законах строения, структуры и превращения химических веществ. Исследует химические явления с помощью теоретических и экспериментальных методов физики. Наиболее обширный раздел химии.

Илья́ Рома́нович Приго́жин — бельгийский физик и физикохимик российского происхождения. Лауреат Нобелевской премии по химии 1977 года за работы в области неравновесной термодинамики, виконт Бельгии. В его честь назван астероид (11964) Пригожин.

Самоорганиза́ция — процесс упорядочения элементов одного уровня в системе за счёт внутренних факторов, без специфического внешнего воздействия, хотя внешние условия могут иметь как стимулирующий, так и подавляющий эффект. В ходе самоорганизации некоторая форма общего порядка возникает из локальных взаимодействий между частями изначально неупорядоченной системы. Процесс может быть спонтанным, когда имеется достаточное количество энергии, не требующей контроля со стороны внешнего агента.
Сложная система — система, состоящая из множества взаимодействующих составляющих (подсистем), вследствие чего она приобретает новые свойства, которые отсутствуют на подсистемном уровне и не могут быть сведены к свойствам подсистемного уровня.
Синерге́тика — междисциплинарное направление науки, объясняющее образование и самоорганизацию моделей и структур в открытых системах, далеких от термодинамического равновесия.

Общая теория систем — научная и методологическая концепция исследования объектов, представляющих собой системы. Она тесно связана с системным подходом и является конкретизацией его принципов и методов.

Эмердже́нтность или эмерге́нтность в теории систем — наличие у системы свойств, не присущих её компонентам по отдельности; несводимость свойств системы к сумме свойств её компонентов.

Термодинами́ческая систе́ма — физическое тело (совокупность тел), способное (способных) обмениваться с другими телами (между собой) энергией и (или) веществом; выделяемая (реально или мысленно) для изучения макроскопическая физическая система, состоящая из большого числа частиц и не требующая для своего описания привлечения микроскопических характеристик отдельных частиц, «часть Вселенной, которую мы выделяем для исследования». Единицей измерения числа частиц в термодинамической системе обычно служит число Авогадро (примерно 6·1023 частиц на моль вещества), дающее представление, о величинах какого порядка идёт речь. Ограничения на природу материальных частиц, образующих термодинамическую систему, не накладываются: это могут быть атомы, молекулы, электроны, ионы, фотоны и т. д.. Любой земной объект, видимый невооружённым глазом или с помощью оптических приборов (микроскопы, зрительные трубы и т. п.), можно отнести к термодинамическим системам: «Термодинамика занимается изучением макроскопических систем, пространственные размеры которых и время существования достаточны для проведения нормальных процессов измерения». Условно к макроскопическим системам относят объекты с размерами от 10−7 м (100 нм) до 1012 м.
Физи́ческая кине́тика — микроскопическая теория процессов в неравновесных средах. В кинетике методами квантовой или классической статистической физики изучают процессы переноса энергии, импульса, заряда и вещества в различных физических системах и влияние на них внешних полей. В отличие от термодинамики неравновесных процессов и электродинамики сплошных сред, кинетика исходит из представления о молекулярном строении рассматриваемых сред, что позволяет вычислить из первых принципов кинетические коэффициенты, диэлектрические и магнитные проницаемости и другие характеристики сплошных сред. Физическая кинетика включает в себя кинетическую теорию газов из нейтральных атомов или молекул, статистическую теорию неравновесных процессов в плазме, теорию явлений переноса в твёрдых телах и жидкостях, кинетику магнитных процессов и теорию кинетических явлений, связанных с прохождением быстрых частиц через вещество. К ней же относятся теория процессов переноса в квантовых жидкостях и сверхпроводниках и кинетика фазовых переходов.
Необрати́мым называется процесс, который нельзя провести в противоположном направлении через все те же самые промежуточные состояния.
Диссипа́ция энергии — переход части энергии упорядоченных процессов в энергию неупорядоченных процессов, в конечном счёте — в теплоту. Системы, в которых энергия упорядоченного движения с течением времени убывает за счёт диссипации, переходя в другие виды энергии, например в теплоту или излучение, называются диссипативными. Для учёта процессов диссипации энергии в таких системах при определённых условиях может быть введена диссипативная функция. Если диссипация энергии происходит в замкнутой системе, то энтропия системы возрастает. Диссипация энергии в открытых системах, обусловленная процессами уноса энергии из системы, например в виде излучения, может приводить к уменьшению энтропии рассматриваемой системы при увеличении полной энтропии системы и окружающей среды. Это, в частности, обеспечивает важную роль процессов диссипации энергии в уменьшении удельной энтропии вещества на стадиях образования галактик и звёзд в модели горячей Вселенной.
Уравнение фон Неймана — уравнение квантовой механики, описывающее эволюцию как чистых, так и смешанных состояний квантовых гамильтоновых систем.
Уравнение Линдблада — уравнение для матрицы плотности, является наиболее общим видом марковского производящего уравнения, описывающего неунитарную эволюцию матрицы плотности
. Эволюция при этом представляется вполне-положительным отображением (супероператором), сохраняющим след. Предложено в 1976 году Витторио Горини, Анжеем Коссаковским, Джорджем Сударшаном и Йёраном Линдбладом.

Неравновесная термодинамика — раздел термодинамики, изучающий системы вне состояния термодинамического равновесия и необратимые процессы. Возникновение этой области знания связано главным образом с тем, что подавляющее большинство встречающихся в природе систем находятся вдали от термодинамического равновесия.
Открытая система в физике — физическая система, которую нельзя считать закрытой по отношению к окружающей среде в каком-либо аспекте — информационном, вещественном, энергетическом и т. д. Открытые системы могут обмениваться веществом, энергией, информацией с окружающей средой.
Открытая система в статистической механике — механическая или термодинамическая система, которая может обмениваться веществом и энергией с окружающей средой. Открытые системы взаимодействуют с внешней средой, причем полностью описать это взаимодействие и задать его некоторым гамильтонианом невозможно. Открытая система в равновесной статистической механике — это механическая система, число частиц в которой не остаётся постоянным.
Открытая система в квантовой механике — квантовая система, которая может обмениваться энергией и веществом с внешней средой. В определенном смысле всякая квантовая система может рассматриваться как открытая система, поскольку измерение любой динамической величины (наблюдаемой) связано с конечным необратимым изменением квантового состояния системы. Поэтому в отличие от классической механики, в которой измерения не играют существенной роли, теория открытых квантовых систем должна включать в себя теорию квантовых измерений.
Теорема Пригожина — теорема термодинамики неравновесных процессов. Согласно этой теореме, стационарному состоянию линейной неравновесной системы соответствует минимальное производство энтропии. Если таких препятствий нет, то производство энтропии достигает своего абсолютного минимума — нуля. Под линейной системой подразумевается выполнение линейных феноменологических соотношений между термодинамическими потоками и движущими силами. Коэффициенты пропорциональности в зависимостях между потоками и движущими силами называют феноменологическими коэффициентами.
Аксиоматика термодинамики имеет своей задачей выявление структуры термодинамических понятий и законов с целью логически непротиворечивого введения в научный оборот макроскопических физических величин, которым не даётся определения в других разделах физики, — внутренней энергии, энтропии и температуры: «в термодинамику вводятся две новые физические величины — энтропия и абсолютная температура; этот шаг подлежит обоснованию». Существует и другое представление о роли аксиоматики в термодинамике (Г. Фальк): «С установлением какой-либо теории она сама становится предметом исследования прежде всего, когда она благодаря дополнениям в такой мере расширяется, что становится всё труднее проникнуть в её логические связи. Тогда и начинаются задачи аксиоматики…».