
Лемниска́та Берну́лли — плоская алгебраическая кривая. Определяется как геометрическое место точек, произведение расстояний от которых до двух заданных точек (фокусов) постоянно и равно квадрату половины расстояния между фокусами.

Архимедова спираль — спираль, плоская кривая, траектория точки M, которая равномерно движется вдоль луча OV с началом в O, в то время как сам луч OV равномерно вращается вокруг O. Другими словами, расстояние ρ = OM пропорционально углу поворота φ луча OV. Повороту луча OV на один и тот же угол соответствует одно и то же приращение ρ. Свойства этой спирали описаны Архимедом в его сочинении «О спиралях».

Тетра́эдр — простейший многогранник, гранями которого являются четыре треугольника.
Диверге́нция — дифференциальный оператор, отображающий векторное поле на скалярное, который определяет, «насколько расходится входящее и исходящее из малой окрестности данной точки поле», точнее, насколько расходятся входящий и исходящий потоки.

Кардио́ида, или сердцеви́дная крива́я — плоская линия, которая описывается фиксированной точкой окружности, катящейся по неподвижной окружности с таким же радиусом. Получила своё название из-за схожести своих очертаний со стилизованным изображением сердца.
Те́нзор эне́ргии-и́мпульса (ТЭИ) — симметричный тензор второго ранга (валентности), описывающий плотность и поток энергии и импульса полей материи и определяющий взаимодействие этих полей с гравитационным полем.

Овал Кассини — кривая, являющаяся геометрическим местом точек, произведение расстояний от которых до двух заданных точек (фокусов) постоянно и равно квадрату некоторого числа
. Является частным случаем торического сечения и кривой Персея.

Гиперболическая спираль — плоская трансцендентная кривая. Уравнение гиперболической спирали в полярной системе координат является обратным для уравнения Архимедовой спирали и записывается так:

Водородоподо́бный а́том или водородоподо́бный ио́н представляет собой любое атомное ядро, которое имеет один электрон и, следовательно, является изоэлектронным атому водорода. Эти ионы несут положительный заряд
, где
— зарядовое число ядра. Примерами водородоподобных ионов являются He+, Li2+, Be3+ и B4+. Поскольку водородоподобные ионы представляют собой двухчастичные системы, взаимодействие которых зависит только от расстояния между двумя частицами, их (нерелятивистское) уравнение Шредингера и (релятивистское) уравнение Дирака имеют решения в аналитической форме. Решения являются одноэлектронными функциями и называются водородоподобными атомными орбиталями.

Гравитацио́нный потенциа́л — скалярная функция координат и времени, достаточная для полного описания гравитационного поля в классической механике. Имеет размерность квадрата скорости, обычно обозначается буквой
. Гравитационный потенциал в данной точке пространства, задаваемой радиус-вектором
, численно равен работе, которую выполняют гравитационные силы при перемещении пробного тела единичной массы по произвольной траектории из данной точки в точку, где потенциал принят равным нулю. Гравитационный потенциал равен отношению потенциальной энергии
небольшого тела, помещённого в эту точку, к массе тела
. Как и потенциальная энергия, гравитационный потенциал всегда определяется с точностью до постоянного слагаемого, обычно (но не обязательно) подбираемого таким образом, чтобы потенциал на бесконечности оказался нулевым. Например, гравитационный потенциал на поверхности Земли, отсчитываемый от бесконечно удалённой точки (если пренебречь гравитацией Солнца, Галактики и других тел), отрицателен и равен −62,7·106 м2/с2 (половине квадрата второй космической скорости).
Дисперсия групповых скоростей — аналог дисперсии фазовой скорости для квазимонохроматических импульсов, играет ключевую роль при распространении широкополосных импульсов в диспергирующей среде, такой как, например, стекло или вода.

Проекция Альберса — картографическая проекция, разработанная в 1805 году немецким картографом Хейнрихом Альберсом (1773—1833). Используется для изображения регионов, вытянутых в широтном направлении. Проекция коническая, сохраняющая площадь объектов, но искажающая углы и форму контуров. Параллели в этой проекции отображаются в виде концентрических окружностей, а меридианы — в виде прямых, проходящих через одну точку. Переменными проекции являются две главные параллели, искажения на которых равны нулю.
Коэффицие́нт поглоще́ния — безразмерная физическая величина, характеризующая способность тела поглощать падающее на него излучение. В качестве буквенного обозначения используется греческая
.
Тороидальная система координат — ортогональная система координат в пространстве, координатными поверхностями которой являются торы, сферы и полуплоскости. Данная система координат может быть получена посредством вращения двумерной биполярной системы координат вокруг оси, равноудалённой от фокусов биполярной системы.
Спираль Галилея — плоская трансцендентная кривая, уравнение которой в полярных координатах имеет вид:
где 
Принцип Гарнака — теорема о свойствах монотонной последовательности гармонических в ограниченной области функций, распространяющая сходимость в некоторой точке на сходимость во всей области. Установлена немецким математиком Акселем Гарнаком в 1886 году.

Равновеликая азимутальная проекция Ламберта — это способ проекции с поверхности сферы на поверхность круга. Эта проекция сохраняет площади, но не сохраняет углы. Проекция носит имя швейцарского математика Иоганна Генриха Ламберта, который представил её в 1772 году.

Уравнение Лейна — Эмдена в астрофизике — безразмерная форма уравнения Пуассона для гравитационного потенциала ньютоновской самогравитирующей сферически-симметричной политропной жидкости. Уравнение носит название по фамилиям астрофизиков Джонатана Лейна и Роберта Эмдена. Уравнение имеет вид

Ме́тод Га́усса в небесной механике и астродинамике используется для первоначального определения параметров орбиты небесного тела по трём наблюдениям.
Мультипольное излучение — излучение, обусловленное изменением во времени мультипольных моментов системы. Используется для описания электромагнитного или гравитационного излучения от изменяющегося во времени (нестационарного) распределения удалённых источников. Мультипольное разложение применяется к физическим явлениям, которые происходят на разных масштабах — от гравитационных волн из-за столкновения галактик до гамма-излучения в результате радиоактивного распада. Мультипольное излучение анализируется способами, схожими с применяемыми для мультипольного разложения полей от стационарных источников. Однако есть важные отличия, поскольку поля мультипольного излучения ведут себя несколько иначе полей от стационарных источников. Эта статья в первую очередь касается электромагнитного мультипольного излучения, хотя гравитационные волны рассматриваются аналогично.