Антиводоро́д — аналог водорода, состоящий из антивещества. В то время как обычный атом водорода состоит из электрона и протона, атом антиводорода состоит из позитрона и антипротона. Учёные надеются, что изучение антиводорода поможет пролить свет на вопрос, почему в наблюдаемой Вселенной больше материи, чем антиматерии, известный как проблема барионной асимметрии. Антиводород вырабатывается искусственно в ускорителях заряженных частиц.

Электро́н — субатомная частица, чей электрический заряд отрицателен и равен по модулю одному элементарному электрическому заряду. Электроны принадлежат к первому поколению лептонных частиц и обычно считаются фундаментальными частицами, поскольку у них нет известных компонентов или субструктур. Электрон имеет массу, которая составляет приблизительно 1/1836 массы протона. Квантово-механические свойства электрона включают собственный угловой момент (спин) полуцелого значения, выраженного в единицах приведённой постоянной Планка, ħ, что делает их фермионами. В связи с этим никакие два электрона не могут занимать одно и то же квантовое состояние в соответствии с принципом запрета Паули. Как и все элементарные частицы, электроны обладают свойствами как частиц, так и волн: они могут сталкиваться с другими частицами и могут дифрагировать как свет. Волновые свойства электронов легче наблюдать экспериментально, чем свойства других частиц, таких как нейтроны и протоны, потому что электроны имеют меньшую массу и, следовательно, большую длину волны де Бройля для равных энергий.

Нуклеоси́нтез — природный процесс образования ядер химических элементов тяжелее водорода. Нуклеосинтез является причиной наблюдаемой распространённости химических элементов и их изотопов.
Ква́рковая звезда́ — гипотетический космический объект, состоящий из так называемой «кварковой материи». Пока неясно, является ли переход вещества в кварковое состояние обратимым, то есть перейдёт ли кварковая материя обратно в нейтронную при уменьшении давления. Как показывает моделирование, в «кварковом газе», из которого, предположительно, состоит кварковая звезда, должно присутствовать большое количество s-кварков, поэтому иногда кварковые звёзды называют ещё и «странными» звёздами.

Чёрные ка́рлики — остывшие и вследствие этого не излучающие в видимом диапазоне белые карлики. Представляют собой конечную стадию эволюции белых карликов в отсутствие аккреции.
Косми́ческое излуче́ние — электромагнитное или корпускулярное излучение, имеющее внеземной источник; подразделяют на первичное и вторичное. В узком смысле иногда отождествляют космическое излучение и космические лучи.

Фримен Джон Да́йсон — американский физик-теоретик английского происхождения, один из создателей квантовой электродинамики.
Магно́н — квазичастица, соответствующая элементарному возбуждению системы взаимодействующих спинов. В кристаллах с несколькими магнитными подрешётками могут существовать несколько сортов магнонов, имеющих различные энергетические спектры. Магноны подчиняются статистике Бозе — Эйнштейна. Магноны взаимодействуют друг с другом и с другими квазичастицами. Существование магнонов подтверждается экспериментами по рассеянию нейтронов, электронов и света, которое сопровождается рождением или уничтожением магнона.
Крото́вая нора́, или «крото́вина», «кротови́на», а также «червячный переход» или «червото́чина» — топологическая особенность пространства-времени, представляющая собой в каждый момент времени «тоннель» в пространстве. Эти области могут быть как связаны и помимо кротовой норы, представляя собой области единого пространства, так и полностью разъединены, представляя собой отдельные пространства, связанные между собой только посредством кротовой норы.
p-процесс — термоядерная реакция, происходящая, в частности, при коллапсе ядра сверхновой звезды, и ответственная за происхождение некоторых богатых протонами атомных ядер тяжелее железа.
rp-Проце́сс — процесс быстрого захвата протонов атомными ядрами в астрофизических условиях, один из процессов звёздного нуклеосинтеза, ответственных за рождение многих элементов тяжелее железа, встречающихся во Вселенной. Является «зеркальным» аналогом r-процесса, происходящего при быстром захвате нейтронов. В отличие от s- и r-процессов, rp-процесс проходит на протонно-избыточных (нейтрон-дефицитных) ядрах. Условием осуществления rp-процесса является наличие настолько плотного и высокоэнергичного потока протонов, что среднее время между двумя последовательными захватами протона данным ядром меньше, чем среднее время жизни ядра по отношению к электронному захвату, позитронному распаду и другим радиоактивным распадам. Отличие от «медленного» p-процесса, происходящего при меньших плотностях потоков протонов, состоит в том, что ядро после захвата протона не успевает распасться путём последовательных электронных захватов и позитронных распадов в бета-стабильное ядро; путь rp-процесса идёт по области β+-радиоактивных ядер, не спускаясь к бета-стабильным ядрам. Верхний предел rp-процесса пока точно не установлен

Ро́берт Ге́нри Ди́кке — американский физик, член Национальной академии наук США с 1967 года, известный своими работами в области астрофизики, атомной физики, космологии и гравитации. Один из первых разработчиков теории электрических цепей с распределёнными параметрами.

На космологической шкале времени события могут быть предсказаны с той или иной долей вероятности. Например, согласно некоторым космологическим гипотезам о судьбе Вселенной, существует вероятность того, что произойдёт Большой разрыв всей материи за конечное время. Если эта гипотеза окажется верна, то события, описанные в этой статье на дальнем конце временной шкалы, могут никогда не наступить.

Большой отскок — космологическая гипотеза формирования Вселенной, вытекающая из циклической модели, или интерпретация теории Большого взрыва, согласно которой возникновение нашей Вселенной стало результатом распада некоей «предыдущей» Вселенной.
Некоторые из нерешённых проблем астрономии являются теоретическими, что означает, что существующие теории кажутся неспособными объяснить определённый наблюдаемый феномен или экспериментальный результат. Другие являются экспериментальными, что означает, что существует трудность в создании эксперимента для проверки предложенной теории или более детального изучения явления. Некоторые нерешённые вопросы астрономии относятся к разовым событиям, необычным явлениям, которые не повторялись, и причины которых поэтому остаются неясными.
Гексакварк — в физике элементарных частиц большое семейство гипотетических частиц, каждая из которых состоит из шести кварков или антикварков любых ароматов. Шесть составляющих кварков в любой из нескольких комбинаций могут дать нулевой цветовой заряд; например гексакварк может представлять собой два связанных друг с другом бариона (дибарион), или три кварка и три антикварка. По прогнозам, после образования дибарионы будут достаточно стабильными.

Взрывной нуклеосинтез — нуклеосинтез, происходящий в звёздах, потерявших гидростатическое равновесие: например, при взрывах сверхновых. Считается, что в процессах взрывного нуклеосинтеза, хотя бы частично, образуются все химические элементы от углерода до железа, а также некоторые элементы тяжелее железа.

Железо-56 (56Fe) — наиболее распространённый изотоп железа. Он составляет около 91,754 % всего железа.
Эпоха вечной тьмы — последняя эпоха Вселенной, которая наступит спустя 1,7×10106 лет после испарения последней сверхмассивной чёрной дыры. Эпохе вечной тьмы предшествует эпоха чёрных дыр.
Большие дополнительные измерения, ADD,LED — собирательное название теорий физики элементарных частиц, предполагающих что четырёхмерное пространство-время Стандартной модели располагается на бране, погруженной в многомерное пространство, включающее, помимо четырёхмерного пространства-времени, большие или бесконечные дополнительные измерения. Электромагнитное, сильное и слабое взаимодействия действуют внутри четырех измерений этой браны, а гравитоны, кроме того, могут распространяться через дополнительные измерения. Предполагается, что на основе таких теорий можно найти решение ряда физических проблем: проблемы иерархии, проблемы космологической постоянной и т.д. Идея больших дополнительных измерений была выдвинута Нимой Аркани-Хамедом, Савасом Димопулосом и Джиа Двали в 1998 году. Предполагается, что излучение гравитонов в дополнительные измерения позволит экспериментально проверить теорию больших дополнительных измерений на современных ускорителях при энергиях столкновения порядка ТэВ. Один из способов проверить теорию заключается в столкновении двух протонов в Большом адронном коллайдере или электрона и позитрона в электронном ускорителе так, чтобы при их столкновении образовался гравитон, который мог бы излучиться в дополнительные измерения, что привело бы к уменьшению наблюдаемой энергии и поперечного импульса. До сих пор ни один эксперимент на Большом адронном коллайдере не обнаружил подобного эффекта.