Протео́мика — область молекулярной биологии, посвящённая идентификации и количественному анализу белков. Термин «протеомика» был предложен в 1997 году. Совокупность всех белков клетки называют протеомом.

Белки́ — высокомолекулярные органические вещества, состоящие из альфа-аминокислот, соединённых в цепочку пептидной связью. В живых организмах аминокислотный состав белков определяется генетическим кодом, при синтезе в большинстве случаев используется 20 стандартных аминокислот. Множество их комбинаций определяет большое разнообразие свойств молекул белков. Кроме того, аминокислотные остатки в составе белка часто подвергаются посттрансляционным модификациям, которые могут возникать и до того, как белок начинает выполнять свою функцию, и во время его «работы» в клетке. Часто в живых организмах несколько молекул разных белков образуют сложные комплексы, например фотосинтетический комплекс и другие комплексы.

Биолюминесце́нция — способность живых организмов светиться, достигаемая самостоятельно или с помощью симбионтов. Название происходит от др.-греч. βίος «жизнь» + лат. lumen «свет» + лат. escendere «испускать».

Двухфото́нный ла́зерный микроско́п — лазерный микроскоп, позволяющий наблюдать живые ткани на глубине более одного миллиметра, используя явление флуоресценции. Двухфотонный микроскоп является разновидностью мультифотонного флуоресцентного микроскопа. Его преимущества по сравнению с конфокальным микроскопом — большая проникающая способность и низкая степень фототоксичности.

Липи́дные ра́фты — особые участки (микродомены) плазматической мембраны, обогащённые гликосфинголипидами и холестерином. Эти участки координируют клеточные процессы, влияют на текучесть мембраны, служат организующими центрами для сборки сигнальных молекул, регулируют перемещение мембранных белков, рецепторов, а также регулируют нейротрансмиссию. Липидные рафты более структурированы и упакованы плотнее, чем окружающий их липидный бислой; при этом они способны свободно в нём перемещаться.

Роджер Тсиен — американский химик китайского происхождения, профессор кафедры химии и биохимии Калифорнийского Университета в Сан-Диего. В 2008 году был удостоен Нобелевской премии по химии «за открытие и работу над зелёным флуоресцентным белком» совместно с двумя другими химиками.

Зелёный флуоресцентный белок (ЗФБ) — белок, выделенный из медузы Aequorea victoria, который флуоресцирует в зелёном диапазоне при освещении его светом от синего до ультрафиолетового диапазона. В настоящее время ген белка широко используется в качестве светящейся метки в клеточной и молекулярной биологии для изучения экспрессии клеточных белков. Разработаны модификации белка для применения в биосенсорах. Созданы цельные светящиеся животные, у которых ЗФБ внесён в геном и передаётся по наследству. Созданы также ЗФБ-содержащие вирусные векторы, позволяющие локально вводить желаемый ген в организм животного и прослеживать экспрессируемый белок. В 2008 году Осаму Симомура, Мартин Чалфи и Роджер Тсьен получили Нобелевскую премию по химии «за открытие и разработку зелёного флуоресцентного белка».

Флуоресце́нтная микроскопи́я — метод получения увеличенного изображения с использованием люминесценции возбуждённых атомов и молекул образца. Широко применяется в материаловедении и медико-биологических областях.

Флуоресценция нашла широкое применение в различных прикладных биологических и биомедицинских исследованиях. Это физическое явление, суть которого заключается в кратковременном поглощении кванта света флюорофором с последующей быстрой эмиссией другого кванта, который имеет свойства, отличные от исходного. Много направлений в биофизике, молекулярной и клеточной биологии возникли и развиваются именно благодаря внедрению новых методов, базирующихся на флуоресценции. Стоит отметить несколько примеров.

Белок-белковые взаимодействия (ББВ) — обладающие высокой специфичностью физические контакты между двумя и более белками. Эти контакты образуются в результате биохимических событий с помощью электростатических взаимодействий, в том числе гидрофобного эффекта.

Брэйнбоу – это метод нейровизуализации, в основе которого лежит использование флуоресцентных белков. Будучи внедрённым в геном животного, зелёный флуоресцентный белок и его генетически модифицированные варианты окрашивают нервные клетки в разные цвета, что позволяет значительно более точно локализовать архитектуру нейронных связей отдельных клеток. Данный метод позволяет картографировать одновременно до 100 нервных клеток.
Флуоресцентная наноскопия — метод детектирования флуоресцентных объектов с помощью оптического микроскопа, обладающий пространственным разрешением, в несколько раз превышающим теоретический предел оптической дифракции.
Красный флуоресцентный белок (КФБ) — белок-флуорофор, выделенный из кораллов рода Discosoma отряда морских анемон, который при возбуждении флуоресцирует в красно-оранжевом диапазоне. Кроме этого, с помощью направленного мутагенеза из натурального белка было получено несколько вариантов с различными спектральными характеристиками, включая варианты, флуоресцирующие в оранжевом, красном и инфракрасном диапазоне.

Discosoma (лат.) — род стрекающих из семейства Discosomidae отряда Corallimorpharia. Большинство видов — кораллы дискообразной формы, образуют большое количество слизи. Отличаются разнообразием окраски, включая металлические и флуоресцентные оттенки, полосатые или пятнистые.

mCherry — белок, входящий в группу мономерных красных флуоресцентных белков mFruits. Его природный белок-предшественник DsRed (RFP) был выделен из кораллов рода Discosoma отряда морских анемон. В отличие от DsRed mCherry является мономерным белком и его флуоресценция более стабильна, чем у его природного предшественника. Флуоресцентные белки применяются как клеточные метки для биологических исследований с помощью флуоресцентной микроскопии. mCherry поглощает свет в районе 540—590 нм и испускает свет в районе 550—650 нм. mCherry входит в семейство флуорецентных белковых флуорофоров, использующихся для экспериментальной визуализации генов и анализа их функций. Редактирование генома позволило с высокой точностью вводить эти флуоресцентные тэги в геном многих модельных организмов.

Дегро́н — часть молекулы белка, которая регулирует скорость его разрушения (протеолиза). Известные на данный момент дегроны представляют собой короткие аминокислотные последовательности, структурные мотивы или экспонированные из белковой глобулы аминокислотные остатки, располагающиеся в любом участке аминокислотной цепочки. Некоторые белки содержат несколько дегронов. Дегроны выявлены у белков разнообразных организмов, начиная от N-концевых дегронов дрожжей и кончая последовательностью PEST в орнитиндекарбоксилазе мыши. Дегроны также были выявлены в белках прокариот.

Алекса́ндр Па́влович Сави́цкий — российский учёный, специалист в области физической биохимии, доктор химических наук (1991), профессор (1995), лауреат премии правительства РФ в области науки и техники (2010). Заведует лабораторией физической биохимии в Федеральном исследовательском центре «Фундаментальные основы биотехнологии» РАН, читает курсы лекций по методам биохимии и флуоресцентной спектроскопии на Химическом факультете МГУ им. М.В. Ломоносова.

DAPI, или 4',6-диамидино-2-фенилиндол, представляет собой флуоресцентный краситель, который прочно связывается с богатыми аденином и тимином областями ДНК. Он широко используется в флуоресцентной микроскопии. Поскольку DAPI может проходить через интактную клеточную мембрану, его можно использовать для окрашивания как живых, так и фиксированных клеток, хотя он менее эффективно проходит через мембрану в живых клетках и, следовательно, служит маркером жизнеспособности мембраны.

Красители Hoechst являются частью семейства синих флуоресцентных красителей, используемых для окрашивания ДНК. Эти бис-бензимиды были первоначально разработаны компанией Hoechst AG, которая пронумеровала все свои соединения так, что краситель Hoechst 33342 является 33342-м соединением, произведенным компанией. Есть три родственных красителя Hoechst: Hoechst 33258, Hoechst 33342 и Hoechst 34580. Красители Hoechst 33258 и Hoechst 33342 являются наиболее часто используемыми и имеют схожие спектры возбуждения-испускания.

В биохимии конформационное изменение — это изменение формы макромолекулы, часто вызванное факторами окружающей среды.