
Пло́щадь — в узком смысле, площадь фигуры — численная характеристика, вводимая для определённого класса плоских геометрических фигур и обладающая свойствами площади. Интуитивно, из этих свойств следует, что бо́льшая площадь фигуры соответствует её «большему размеру», a оценить площадь фигуры можно с помощью наложения на её рисунок сетки из линий, образующих одинаковые квадратики и подсчитав число квадратиков и их долей, попавших внутрь фигуры. В широком смысле понятие площади обобщается на k-мерные поверхности в n-мерном пространстве, в частности, на двумерную поверхность в трёхмерном пространстве.

Квадра́т — правильный четырёхугольник, то есть плоский четырёхугольник, у которого все углы и все стороны равны. Каждый угол квадрата — прямой
.

Многоуго́льник — геометрическая фигура, обычно определяемая как часть плоскости, ограниченная замкнутой ломаной. Если граничная ломаная не имеет точек самопересечения, многоугольник называется простым. Например, треугольники и квадраты — простые многоугольники, а пентаграмма — нет.

Четырёхугольник — это геометрическая фигура (многоугольник), состоящая из четырёх точек (вершин), никакие три из которых не лежат на одной прямой, и четырёх отрезков (сторон), последовательно соединяющих эти точки. Различают выпуклые и невыпуклые четырёхугольники, невыпуклый четырёхугольник может быть самопересекающимся. Четырёхугольник без самопересечений называется простым, часто под термином «четырёхугольник» имеются в виду только простые четырёхугольники.

В математике барице́нтр, или геометри́ческий центр, двумерной фигуры — это среднее арифметическое положений всех точек данной фигуры. Определение распространяется на любой объект в n-мерном пространстве. Радиус-вектор барицентра в трёхмерном случае вычисляется как
,

Теле́сный у́гол — часть пространства, которая является объединением всех лучей, выходящих из данной точки и пересекающих некоторую поверхность. Частными случаями телесного угла являются трёхгранные и многогранные углы. Границей телесного угла является некоторая коническая поверхность. Обозначается телесный угол обычно буквой Ω.
Функция Мёбиуса
— мультипликативная арифметическая функция, применяемая в теории чисел и комбинаторике, названа в честь немецкого математика Мёбиуса, который впервые рассмотрел её в 1831 году.
Пери́метр — общая длина границы фигуры. Имеет ту же размерность величин, что и длина.

Пра́вильный многоуго́льник — выпуклый многоугольник, у которого равны все стороны и все углы между смежными сторонами.
Дискре́тное логарифми́рование (DLOG) — задача обращения функции
в некоторой конечной мультипликативной группе
.
Целочисленный треугольник — это треугольник, длины всех сторон которого выражаются целыми числами. Рациональный треугольник можно определить как треугольник, стороны которого являются рациональными числами. Любой рациональный треугольник можно привести к целочисленному, так что нет существенной разницы между целочисленными и рациональными треугольниками. Заметим, однако, что существуют и другие определения «рационального треугольника». Так, в 1914 Кармайкл использовал этот термин для обозначения того, что мы теперь называем героновым треугольником. Сомос (Somos) использует термин для треугольников, отношения сторон которого являются рациональными числами. Конвей и Гай определяют рациональный треугольник как треугольник с рациональными сторонами и углами — в этом случае рациональными будут только равносторонние треугольники с рациональными сторонами.

В евклидовой геометрии описанный четырёхугольник — это выпуклый четырёхугольник, стороны которого являются касательными к одной окружности внутри четырёхугольника. Эта окружность называется вписанной в четырёхугольник. Описанные четырёхугольники являются частным случаем описанных многоугольников.

В математике конечное правило подразделения — это рекурсивный способ деления многоугольника и других двумерных фигур на всё меньшие и меньшие части. Правила подразделения в этом смысле является обобщением фракталов. Вместо повторения одного и того же узора снова и снова здесь имеются небольшие изменения на каждом шаге, что позволяет получить более богатые структуры, сохраняя при этом поддержку элегантного стиля фракталов. Правила подразделения используются в архитектуре, биологии и информатике, а также при изучении гиперболических многообразий. Подстановки плиток являются хорошо изученным видом правил подразделения.
Задачи упаковки — это класс задач оптимизации в математике, в которых пытаются упаковать объекты в контейнеры. Цель упаковки — либо упаковать отдельный контейнер как можно плотнее, либо упаковать все объекты, использовав как можно меньше контейнеров. Многие из таких задач могут относиться к упаковке предметов в реальной жизни, вопросам складирования и транспортировки. Каждая задача упаковки имеет двойственную задачу о покрытии, в которой спрашивается, как много требуется некоторых предметов, чтобы полностью покрыть все области контейнера, при этом предметы могут накладываться.

Сфери́ческий сегме́нт — поверхность, часть сферы, отсекаемая от неё некоторой плоскостью. Плоскость отсекает два сегмента: меньший сегмент называется также сферическим кругом. Если секущая плоскость проходит через центр сферы, то высота обоих сегментов равна радиусу сферы, и каждый из таких сферических сегментов называют полусферой.

Сверхсоставное число — натуральное число с бо́льшим числом делителей, чем любое меньшее натуральное число.
Нера́венство Ка́рлемана — математическое неравенство, названное в честь шведского математика Торстена Карлемана, который в 1923 году опубликовал и доказал данное неравенство. Неравенство Карлемана можно рассматривать как вариацию классического неравенства между средним арифметическим и средним геометрическим. Карлеман использовал это неравенство, чтобы доказать теорему Данжуа — Карлемана о квазианалитических функциях.