
Я́дерный магни́тный резона́нс (ЯМР) — резонансное поглощение или излучение электромагнитной энергии веществом, содержащим ядра с ненулевым спином во внешнем магнитном поле, на частоте ν, обусловленное переориентацией магнитных моментов ядер.

А́том — частица вещества микроскопических размеров и массы, наименьшая часть химического элемента, являющаяся носителем его химических свойств.

А́томное ядро́ — центральная часть атома, в которой сосредоточена основная его масса. Ядро заряжено положительно, заряд ядра определяет химический элемент, к которому относят атом. Размеры ядер различных атомов составляют несколько фемтометров, что более чем в 10 тысяч раз меньше размеров самого атома. Атомные ядра изучает ядерная физика.

Спектра́льная ли́ния — узкий участок энергетического спектра, где интенсивность излучения усилена либо ослаблена по сравнению с соседними областями спектра. В первом случае линия называется эмиссионной линией, во втором — линией поглощения. Положение линии в электромагнитном спектре обычно задаётся длиной волны, частотой или энергией фотона. Кроме электромагнитного спектра, спектральные линии могут возникать в спектрах энергии частиц, в спектрах звуковых колебаний и вообще любых волновых процессов. Ниже, если нет специальных оговорок, имеются в виду электромагнитные спектры.

Бе́та-части́цы — электроны и позитроны, которые вылетают из атомных ядер некоторых радиоактивных веществ при радиоактивном бета-распаде. Направление движения бета-частиц меняется магнитными и электрическими полями, что свидетельствует о наличии в них электрического заряда. Скорости электронов достигают 0,998 скорости света. Бета-частицы ионизируют газы, вызывают люминесценцию многих веществ, действующих на фотоплёнки. Поток бета-частиц называют бета-излучением.
Ква́нтовая хи́мия — направление теоретической химии, рассматривающее строение и свойства химических соединений, реакционную способность, кинетику и механизм химических реакций на основе квантовой механики. Разделами квантовой химии являются: квантовая теория строения молекул, квантовая теория химических связей и межмолекулярных взаимодействий, квантовая теория химических реакций и реакционной способности и др. Она занимается рассмотрением химических и физических свойств веществ на атомарном уровне. Вследствие того, что сложность изучаемых объектов во многих случаях не позволяет находить явные решения уравнений, описывающих процессы в химических системах, применяют приближенные методы расчета. С квантовой химией неразрывно связана вычислительная химия — дисциплина, использующая математические методы квантовой химии, адаптированные для создания специальных компьютерных программ, используемых для расчета молекулярных свойств, амплитуды вероятности нахождения электронов в атомах, симуляции взаимодействия молекул.

Изото́пы — разновидности атомов химического элемента, имеющие одинаковый атомный номер, но разные массовые числа. Название связано с тем, что все изотопы одного атома помещаются в одно и то же место таблицы Менделеева. Химические свойства атома зависят от строения электронной оболочки, которая, в свою очередь, определяется в основном зарядом ядра Z, и почти не зависят от его массового числа A.
Эффе́кт Ко́мптона — упругое рассеяние фотона заряженной частицей, обычно электроном, названное в честь первооткрывателя Артура Холли Комптона. Если рассеяние приводит к уменьшению энергии, поскольку часть энергии фотона передаётся отражающемуся электрону, что соответствует увеличению длины волны фотона, то этот процесс называется эффектом Комптона. Обратное комптоновское рассеяние происходит, когда заряженная частица передаёт фотону часть своей энергии, что соответствует уменьшению длины волны кванта света.
Я́дерная эне́ргия — энергия, содержащаяся в атомных ядрах и выделяемая при ядерных реакциях и радиоактивном распаде.

Заря́довое число́ атомного ядра — количество протонов в атомном ядре. Зарядовое число равно заряду ядра в единицах элементарного заряда и одновременно равно порядковому номеру соответствующего ядра химического элемента в таблице Менделеева. Обычно обозначается буквой Z.

Метод я́дерного га́мма-резона́нса основан на эффекте Мёссба́уэра, который заключается в резонансном поглощении без отдачи атомным ядром монохроматического γ-излучения, испускаемого радиоактивным источником.
Эффе́кт Мёссба́уэра или я́дерный га́мма-резона́нс — испускание или поглощение гамма-квантов атомными ядрами в твёрдом теле, не сопровождающееся изменением колебательной энергии тела, то есть испусканием или поглощением фононов.

Электро́нный захва́т, e-захват — один из видов бета-распада атомных ядер. При электронном захвате один из протонов ядра захватывает орбитальный электрон и превращается в нейтрон, испуская электронное нейтрино. Заряд ядра при этом уменьшается на единицу. Массовое число ядра, как и во всех других видах бета-распада, не изменяется. Этот процесс характерен для ядер с избытком протонов. Если энергетическая разница между родительским и дочерним атомом превышает 1,022 МэВ, электронный захват всегда конкурирует с другим типом бета-распада, позитронным распадом. Например, рубидий-83 превращается в криптон-83 только посредством электронного захвата, тогда как натрий-22 распадается в неон-22 посредством как электронного захвата, так и позитронного распада. Известным и самым часто приводимым примером электронного захвата является превращение калия-40 в аргон с вероятностью этого канала распада около 10 %.

Зако́н Мо́зли — закон, связывающий частоту спектральных линий характеристического рентгеновского излучения атома химического элемента с его порядковым номером. Экспериментально установлен английским физиком Генри Мозли в 1913 году.

Сверхто́нкая структу́ра — расщепление спектральных линий вследствие взаимодействия электронной оболочки атомов со спином ядра, а также вследствие существования различных изотопов элементов, отличающихся массой и магнитным моментом ядра.

Бо́ровская моде́ль а́тома — полуклассическая модель атома, предложенная Нильсом Бором в 1913 г. За основу он взял планетарную модель атома, выдвинутую Эрнестом Резерфордом. Однако, с точки зрения классической электродинамики, электрон в модели Резерфорда, двигаясь вокруг ядра, должен был бы излучать энергию непрерывно и очень быстро и, потеряв её, упасть на ядро. Чтобы преодолеть эту проблему, Бор ввёл допущение, суть которого заключается в том, что электроны в атоме могут двигаться только по определённым (стационарным) орбитам, находясь на которых они не излучают энергию, а излучение или поглощение происходит только в момент перехода с одной орбиты на другую. Причём, стационарными являются лишь те орбиты, при движении по которым момент количества движения электрона равен целому числу постоянных Планка:
.

Ура́н-235, историческое название актиноура́н — радиоактивный нуклид химического элемента урана с атомным номером 92 и массовым числом 235. Изотопная распространённость урана-235 в природе составляет 0,7200(51) %. Является родоначальником радиоактивного семейства 4n+3, называемого рядом актиния. Открыт в 1935 году в США Артуром Демпстером.

Ядерные реакции в звёздах являются их основным источником энергии. Они обеспечивают большое энерговыделение на единицу массы, что позволяет звёздам поддерживать высокую светимость в течение длительного времени. В этих реакциях образуется бо́льшая часть химических элементов, существующих в природе, — происходит нуклеосинтез. Протекание ядерных реакций возможно из-за высокой температуры в недрах звёзд, их темп зависит от температуры и плотности.

Фо́рмула Ри́дберга — эмпирическая формула, описывающая длины волн в спектрах излучения атомов химических элементов. Предложена шведским учёным Йоханнесом Ридбергом и представлена 5 ноября 1888 года.
Возникнове́ние ква́нтовой фи́зики — процесс длительный и постепенный, который занял свыше 25 лет. От первого возникновения понятия кванта до разработки так называемой копенгагенской интерпретации квантовой механики прошло 27 лет, заполненных интенсивной работой учёных всей Европы. В развитии и понимании квантовой теории приняли участие очень многие люди, как старшего поколения — Макс Борн, Макс Планк, Пауль Эренфест, Эрвин Шрёдингер, так и совсем молодые, ровесники квантовой гипотезы — Вернер Гейзенберг (1901), Вольфганг Паули (1900), Поль Дирак (1902) и т. д.