Правильный икосаэдр имеет 60 вращательных (или сохраняющих ориентацию) симметрий и имеет порядок симметрии[англ.] 120, включая преобразования, которые комбинируют отражение и вращение. Правильный додекаэдр имеет тот же набор симметрий, поскольку он двойственен икосаэдру.
Набор сохраняющих ориентацию симметрий образует группу, которую обозначают A5 (знакопеременная группа на 5 буквах), а полная группа симметрии (включающая отражения) является произведением A5Z2. Последняя группа известна также как группа Коксетера H3 и представляется в нотации Коксетера[англ.] как [5,3] и имеет диаграмму Коксетера — Дынкина.
Кроме двух бесконечных семейств призматической и антипризматической симметрии, вращательная икосаэдральная симметрия или хиральная икосаэдральная симметрия хиральных объектов и полная икосаэдральная симметрия или ахиральная икосаэдральная симметрия являются дискретными точечными симметриями (или, эквивалентно, симметриями на сфере) с наибольшей группой симметрии.
Рёбра сферического соединения пяти октаэдров представляют 15 плоскостей зеркального отражения в виде больших цветных окружностей. Каждый октаэдр может представлять 3 ортогональных плоскостей зеркального отражения по его рёбрам.
Пиритоэдральная симметрия является подгруппой с индексом 5 икосаэдральной симметрии, с 3 ортогональными зелёными линиями отражений и 8 красных порядка 3 точек вращения. Поскольку подгруппа имеет индекс 5, имеется 5 других ориентаций пиритоэдральной симметрии.
Группа содержит 5 версий Th с 20 версиями D3 (10 осей, 2 на ось), и 6 версий D5.
Полная икосаэдральная группаIh имеет порядок 120. I является нормальной подгруппы группы Ihиндекса 2. Группа Ih изоморфна , или , с центральной симметрией, соответствующей (1,-1), где Z2 записывается мультипликативно.
Ih действует на соединение пяти кубов[англ.] и соединение пяти октаэдров, но −1 действует как тождественный элемент (так как кубы и октаэдры центрально симметричны). Группа действует на соединение десяти тетраэдров — I действует на две хиральные половинки (cоединения пяти тетраэдров), а −1 обменивает местами две половинки. В частности, она не действует как S5 и эти группы не изоморфны, смотрите ниже.
Группа содержит 10 версий D3d и 6 версий D5d (симметрии аналогичные антирпизимам).
I изоморфна также группе PSL2(5), но Ih не изоморфна SL2(5).
Группы, которые часто путают с группой симметрий икосаэдра
Следующие группы имеют порядок 120, но не изоморфны друг другу:
Заметим, что имеет исключительное[англ.] неприводимое 3-мерное представление (как икосаэдральная группа вращений), но не имеет неприводимого 3-мерного представления, соответствующего полной икосаэдральной группе, не являющейся симметрической группой.
Их можно соотнести с линейными группами над конечным полем с пятью элементами, которые представляют собой подгруппы накрывающих групп прямо. Ни одна из них не является полной икосаэдральной группой:
зеркальное отражение с вращением на 108°, порядок 10
зеркальное отражение с вращением на 36°, порядок 10
r зеркальное отражение с вращением на 60°, порядок 6
зеркальное отражение, порядок 2
Явное представление матрицами вращений
В контексте вычислений, группа икосаэдральных вращений , описанная выше, может быть представлена следующими 60 матрицами поворота. Оси вращений соответствуют всем циклическим перестановкам , где является золотым сечением. Отражение относительно любой плоскости, проходящей через начало координат, дают полную икосаэдральную группу . Все эти матрицы могут быть получены, начав с единичной матрицы, последовательным умножением каждой матрицы в наборе на любые из двух произвольных невырожденных матриц, таких как и , пока размер множества не перестанет расти.
В гекзакисикосаэдре одна полная грань является фундаментальной областью. Другие тела с той же симметрией могут быть получены путём настройкой ориентации граней, например, выравниванием выбранного подмножества граней с последующим объединением каждого подмножества в грань, или путём замены каждой грани на несколько граней, или путём создания неплоской поверхности.
Многогранники с икосаэдральной симметрией
Подробнее см. Многогранники с икосаэдральной симметрией
В химии ион додекабората[англ.] ([B12H12]2−) и молекула додекаэдрана (C20H20)
Жидкие кристаллы с икосаэдральной симметрией
Для промежуточного стояния вещества, называемого жидкими кристаллами, существование икосаэдральной симметрии предположили Х. Кляйнерт и К. Маки[2] и впервые детально проанализировали структуру этих кристаллов. См. обзор статьи здесь. В алюминии икосаэдральную структуру обнаружил тремя годами позже Дан Шехтман, что принесло ему Нобелевскую премию в 2011 году.
Связанные геометрии
Группа симметрий икосаэдра эквивалентна проективной специальной линейной группе PSL(2,5) и является группой симметрии модулярной кривой X(5). Помимо этого, группа PSL(2,p) является группой симметрии модулярной кривой X(p). Модулярная кривая X(5) геометрически является двенадцатигранником с каспом в центре каждой грани и имеет соответствующую группу симметрии.
Эту геометрию и ассоциированную группу симметрии изучал Феликс Кляйн как группы монодромииповерхности Белого — римановы поверхности с голоморфным отображением в риманову сферу, разветвлённым в 0, 1 и бесконечности — каспы являются точками на бесконечности, в то время как вершины и центры каждого ребра лежат на 0 и 1. Степень накрытия (число листов) равно 5.
Это возникает из его попыток дать геометрическое обоснование, почему икосаэдральная симметрия появляется в решении уравнения пятой степени в теории из знаменитой статьи Кляйна[3]. Современное описание дано в статье Тота[4].
Исследования Кляйна продолжились с его открытием симметрий 7 и 11 порядков в статьях 1878-1879 годов[5][6] (и ассоциированных накрытий степени 7 и 11) и dessins d'enfants[англ.] (так называемых «детских рисунков»), давших первые появления квартик Кляйна[англ.], ассоциированная геометрия которых имеет мозаику из 24 семиугольников (с каспом в центре каждого семиугольника).
Подобные геометрии случаются для групп PSL(2,n) и более общих групп для других модулярных кривых.
Более экзотичное проявление, существует особая связь между группами PSL(2,5) (порядка 60), PSL(2,7) (порядка 168) и PSL(2,11) (порядка 660), которые также допускают геометрические интерпретации — PSL(2,5) является симметриями икосаэдра (род 0), PSL(2,7) — квартики Клейна[англ.] (род 3), а PSL(2,11) — поверхности фуллерона (род 70). Эти группы образуют «троицу» в терминологии В. И. Арнольда, что даёт основу для различных связей. См. подробнее в статье «Троицы».
Также группа симметрий икосаэдра тесно связана с другими группами симметрий правильных многогранников.
Felix Klein. Ueber die Transformation siebenter Ordnung der elliptischen Functionen // Mathematische Annalen. — 1878. — Т. 14, вып. 3. — С. 428–471. — doi:10.1007/BF01677143. Перевод на английский
Felix Klein. Ueber die Transformation elfter Ordnung der elliptischen Functionen (On the eleventh order transformation of elliptic functions) // Mathematische Annalen. — 1879. — Т. 15, вып. 3—4. — С. 533–555. — doi:10.1007/BF02086276.Oeuvres, Tome 3, pp. 140—165
Felix Klein. Lectures on the Icosahedron and the Solution of Equations of the Fifth Degree. — Trübner & Co., 1888. — ISBN 0-486-49528-0.
Gábor Tóth. Finite Möbius groups, minimal immersions of spheres, and moduli. — New York Berlin Heidelberg: Springer-Verlag, 2002. — (Universitext). — ISBN 0-387-95323-X.
Правильный многогранник или плато́ново тело — это выпуклый многогранник, грани которого являются равными правильными многоугольниками, обладающий пространственной симметрией следующего типа: все многогранные углы при его вершинах правильные и равны друг другу.
Пра́вильный икоса́эдр — правильный выпуклый многогранник, двадцатигранник, одно из платоновых тел. Каждая из 20 граней представляет собой равносторонний треугольник. Число ребер равно 30, число вершин — 12. Икосаэдр имеет 59 звёздчатых форм.
Тетра́эдр — простейший многогранник, гранями которого являются четыре треугольника.
Окта́эдр — многогранник с восемью гранями.
Кристаллографическая группа — дискретная группа движений -мерного евклидова пространства, имеющая ограниченную фундаментальную область.
Ромбоэдр — это геометрическое тело, являющееся обобщением куба, у которого грани не обязательно квадратны, а лишь являются ромбами. Ромбоэдр является параллелепипедом, в котором все рёбра равны. Ромбоэдр можно использовать для определения ромбоэдрической решётчатой системы, сот с ромбоэдрическими ячейками.
Звёздчатый многогра́нник — невыпуклый многогранник, грани которого пересекаются между собой. Как и у незвёздчатых многогранников, грани попарно соединяются в рёбрах.
Ромбододека́эдр — двенадцатигранник, составленный из одинаковых ромбов. У ромбододекаэдра 14 вершин, 6 из которых являются вершинами меньших углов 4 ромбов, а 8 — вершинами 3 ромбов при их больших углах. Острый угол каждого ромба , а тупой . Другими словами: отношение большей диагонали ромба к меньшей равно . Одинаковыми ромбододекаэдрами можно заполнить трёхмерное пространство без промежутков и наложений. Взаимное расположение плоскостей граней ромбододекаэдра называется ромбическим. Такое же положение имеют, например, 12 из 18 квадратных граней ромбокубооктаэдра.
В математике бинарная группа тетраэдра — это некоторая неабелева группа 24-го порядка. Группа является расширением тетраэдральной группы T 12-го порядка циклической группы 2-го порядка и является прообразом группы тетраэдра для 2:1 накрывающего гомоморфизма специальной ортогональной группы спинорной группой. Отсюда следует, что бинарная группа тетраэдра — дискретная подгруппа группы Spin(3) 24-го порядка.
В математике группа треугольника — это группа, которая может быть представлена геометрически при помощи последовательных отражений относительно сторон треугольника. Треугольником может служить обычный евклидов треугольник, треугольник на сфере или гиперболический треугольник. Любая группа треугольника является группой симметрии паркета конгруэнтных треугольников в двумерном пространстве, на сфере или на плоскости Лобачевского.
Соединение многогранников — это фигура, составленная из некоторых многогранников, имеющих общий центр. Соединения являются трёхмерными аналогами многоугольных соединений, таких как гексаграмма.
Квазипра́вильный многогра́нник — полуправильный многогранник, который имеет в точности два вида правильных граней, поочерёдно следующих вокруг каждой вершины. Эти многогранники рёберно транзитивны, а потому на шаг ближе к правильным многогранникам, чем полуправильные, которые лишь вершинно транзитивны.
Правильный тетраэдр имеет 12 вращательных симметрий и симметрии порядка 24, включающие комбинацию отражений и вращений.
Бинарная группа икосаэдра2I или <2,3,5> — это неабелева группа порядка 120. Группа является расширением группы икосаэдра I или (2,3,5) порядка 60 циклической группой порядка 2 и является прообразом группы икосаэдра при 2:1 накрывающем гомоморфизме
-классификация — полный список однониточных диаграмм Дынкина — диаграмм, в которых отсутствуют кратные рёбра, что соответствует простым корням в системе корней, образующим углы или . Список состоит из:
.
В математике проективная специальная линейная группа PSL(2, 7) — это конечная простая группа, имеющая важные приложения в алгебре, геометрии и теории чисел. Она является группой автоморфизмов квартики Клейна, а также группой симметрии плоскости Фано. Имея 168 элементов, PSL(2, 7) является второй по величине из самых маленьких неабелевых простых групп.
Плосконосый двуклиноид или сиамский додекаэдр — это трёхмерный выпуклый многогранник с двенадцатью правильными треугольниками в качестве граней. Многогранник не является правильным, поскольку в некоторых вершинах сходятся четыре грани, а в остальных — пять граней. Многогранник является двенадцатигранником, одним из восьми дельтаэдров и одним из 92 многогранников Джонсона.
Точечная группа в трёхмерном пространстве — группа изометрий в трёхмерном пространстве, не перемещающая начало координат, или группа изометрий сферы. Группа является подгруппой ортогональной группы O(3), группы всех изометрий, оставляющих начало координат неподвижным, или, соответственно, группы ортогональных матриц. O(3) сама является подгруппой евклидовой группы E(3) движений 3-мерного пространства.
Икосаэдр — это многогранник с 20 гранями.
Нотация Конвея для многогранников, разработанная Конвеем и продвигаемая Хартом, используется для описания многогранников, опираясь на затравочный многогранник, модифицируемый различными префикс-операциями.
Эта страница основана на статье Википедии. Текст доступен на условиях лицензии CC BY-SA 4.0; могут применяться дополнительные условия. Изображения, видео и звуки доступны по их собственным лицензиям.