
Ква́нтовая (волнова́я) меха́ника — фундаментальная физическая теория, которая описывает природу в масштабе атомов и субатомных частиц. Она лежит в основании всей квантовой физики, включая квантовую химию, квантовую теорию поля, квантовую технологию и квантовую информатику.
Парадокс Эйнште́йна — Подо́льского — Ро́зена — парадокс, предложенный для указания на неполноту квантовой механики с помощью мысленного эксперимента, заключающегося в измерении параметров микрообъекта косвенным образом, без непосредственного воздействия на этот объект. Целью такого косвенного измерения является попытка извлечь больше информации о состоянии микрообъекта, чем даёт квантовомеханическое описание его состояния.

Волнова́я фу́нкция, или пси-фу́нкция
— комплекснозначная функция, используемая в квантовой механике для математического описания чистого квантового состояния изолированной квантовомеханической системы. Наиболее распространённые символы для волновой функции — греческие буквы ψ и Ψ. Является коэффициентом разложения вектора состояния по базису. Например, при разложении по координатному базису:
Принцип неопределённости Гейзенбе́рга в квантовой механике — фундаментальное соображение, устанавливающее предел точности одновременного определения пары характеризующих систему квантовых наблюдаемых, описываемых некоммутирующими операторами.

Э́рвин Ру́дольф Йо́зеф Алекса́ндр Шрёдингер — австрийский физик-теоретик, один из создателей квантовой механики. Лауреат Нобелевской премии по физике (1933). Член Австрийской академии наук (1956), а также ряда академий наук мира, в том числе иностранный член Академии наук СССР (1934).
Копенга́генская интерпрета́ция — интерпретация (толкование) квантовой механики, которую сформулировали Нильс Бор и Вернер Гейзенберг во время совместной работы в Копенгагене около 1927 года. Бор и Гейзенберг усовершенствовали вероятностную интерпретацию волновой функции, данную Максом Борном, и попытались ответить на ряд вопросов, возникающих вследствие свойственного квантовой механике корпускулярно-волнового дуализма, в частности на вопрос об измерении.
Интерпрета́ция ква́нтовой меха́ники — система философских воззрений на сущность квантовой механики как физической теории, описывающей материальный мир. Известно несколько интерпретаций, по-разному решающих такие философские проблемы, как вопрос о природе физической реальности и способе её познания, о характере детерминизма и причинности, о сущности и месте статистики в квантовой механике. Квантовая механика считается «наиболее проверенной и наиболее успешной теорией в истории науки», но консенсуса в понимании «её глубинного смысла» всё ещё нет.
Кот Шрёдингера — мысленный эксперимент, предложенный одним из создателей квантовой механики Эрвином Шрёдингером в 1935 году при обсуждении физического смысла волновой функции. В ходе эксперимента возникает суперпозиция живого и мёртвого кота, что выглядит абсурдно с точки зрения здравого смысла.
Многомирова́я интерпрета́ция или интерпретация Эверетта — интерпретация квантовой механики, которая предполагает существование, в некотором смысле, «параллельных вселенных», в каждой из которых действуют одни и те же законы природы и которым свойственны одни и те же мировые постоянные, но которые находятся в различных состояниях. Исходная формулировка принадлежит Хью Эверетту.

Влади́мир Алекса́ндрович Фок — советский физик-теоретик, автор основополагающих трудов по квантовой теории поля, квантовой электродинамике, квантовой механике и общей теории относительности. Академик АН СССР (1939), Герой Социалистического Труда, член ряда академий наук и научных обществ, лауреат многих национальных и международных премий. Номинант на Нобелевскую премию по физике.

Макс Борн — немецкий физик-теоретик и математик, один из создателей квантовой механики, сделал существенный вклад в физику твёрдого тела и оптику. Лауреат Нобелевской премии по физике (1954).
Корпускулярно-волновой дуализм — свойство природы, состоящее в том, что материальные микроскопические объекты могут при одних условиях проявлять свойства классических волн, а при других — свойства классических частиц.
Теории скрытых параметров — в квантовой механике теории, предложенные для решения проблемы квантовомеханического измерения путём ввода гипотетических внутренних параметров, присущих измеряемым системам. Значения таких параметров не могут быть измерены экспериментально, но определяют результат измерения других параметров системы, описываемых в квантовой механике волновыми функциями и/или векторами состояния.
Теория де Бройля — Бома, также известная как теория волны-пилота, механика Бома, интерпретация Бома и причинная интерпретация, является интерпретацией квантовой теории. В дополнение к волновой функции на пространстве всех возможных конфигураций, она постулирует реальную конфигурацию, которая существует, даже не будучи измеряемой. Эволюция конфигурации во времени определяется волновой функцией с помощью управляющего уравнения. Эволюция волновой функции во времени задаётся уравнением Шрёдингера. Теория названа в честь Луи де Бройля (1892—1987) и Дэвида Бома (1917—1992).
Основные положения статистической интерпретации волновой функции были сформулированы Максом Борном в 1926 году, как только было опубликовано волновое уравнение Шрёдингера. В отличие от интерпретации Шрёдингера, представляющей электрон в атоме в виде волнового пакета, интерпретация Борна рассматривала электрон в атоме как отрицательно заряженную элементарную частицу и сохраняла структуру электрона. Но при этом законы движения электрона в атоме приобретают вероятностный характер, определяемый волновой функцией. В рамках статистической интерпретации волновой функции терялся смысл понятия траектории движения электрона, однако можно было рассматривать вероятность нахождения электрона в определённом элементе пространства, окружающего ядро атома.
Возникнове́ние ква́нтовой фи́зики — процесс длительный и постепенный, который занял свыше 25 лет. От первого возникновения понятия кванта до разработки так называемой копенгагенской интерпретации квантовой механики прошло 27 лет, заполненных интенсивной работой учёных всей Европы. В развитии и понимании квантовой теории приняли участие очень многие люди, как старшего поколения — Макс Борн, Макс Планк, Пауль Эренфест, Эрвин Шрёдингер, так и совсем молодые, ровесники квантовой гипотезы — Вернер Гейзенберг (1901), Вольфганг Паули (1900), Поль Дирак (1902) и т. д.
Интерпрета́ция Блохи́нцева — интерпретация квантовой механики на основе концепции квантовых ансамблей. Была выдвинута Д. И. Блохинцевым, Я. П. Терлецким, К. В. Никольским. Полемизируя с Нильсом Бором, утверждавшим, что статистический характер квантовой механики объясняется неконтролируемым воздействием измерительного прибора на микрообъект и что, следовательно квантовая статистика не имеет объективной, независимой от измерительного прибора, реальности, Д. И. Блохинцев выдвинул положение, что квантовая механика неприменима к отдельным микрообъектам, а только к квантовым статистическим ансамблям и что, следовательно, квантовая статистика имеет объективную, независимую от измерительного прибора, реальность
Квантовая механика изучает свойства единичного микроявления посредством изучения статистических закономерностей коллектива таких явлений.

Дискуссия Бора и Эйнштейна — серия публичных споров о квантовой механике между Альбертом Эйнштейном и Нильсом Бором, являющаяся важным этапом развития философии науки. Итоги дискуссии были подведены Бором в обзорной статье под названием «Дискуссии с Эйнштейном о проблемах теории познания в атомной физике». Несмотря на их различия во мнениях относительно квантовой механики, Бор и Эйнштейн до конца своих дней испытывали взаимное восхищение.
Проблема измерения в квантовой механике — проблема определения когда происходит коллапс волновой функции. Неспособность наблюдать такой коллапс напрямую породила разные интерпретации квантовой механики и сформулировала ключевой набор вопросов, на которые должна дать ответы каждая интерпретация.

В физике эффектом наблюдателя называют теорию, что простое наблюдение явления неизбежно изменяет его. Часто это следствие несовершенства применяемых инструментов, которые по своему принципу работы изменяют состояние измеряемой величины. Примером служит проверка давления в автомобильных шинах; это трудно сделать, не выпуская немного воздуха при соединении с манометром; кроме того, прибор сам имеет какой-то объём. Невозможно увидеть какой-то объект без облучения его светом или другими частицами, которые влияют на состояние объекта, а поглощение квантов для измерения освещённости уменьшает её. Даже если эффект наблюдателя невелик, объект всё равно изменяет состояние. Этот эффект наблюдается во многих областях физики, но обычно может быть уменьшен подбором эффективных инструментов и/или использованием лучших методов наблюдения.