
Нейро́нная сеть — математическая модель, а также её программное или аппаратное воплощение, построенная по принципу организации биологических нейронных сетей — сетей нервных клеток живого организма. Это понятие возникло при изучении процессов, протекающих в мозге, и при попытке смоделировать эти процессы. Первой такой попыткой были нейронные сети У. Маккалока и У. Питтса. После разработки алгоритмов обучения получаемые модели стали использовать в практических целях: в задачах прогнозирования, для распознавания образов, в задачах управления и др.

Теория распознава́ния о́бразов — раздел информатики и смежных дисциплин, развивающий основы и методы классификации и идентификации предметов, явлений, процессов, сигналов, ситуаций и т. п. объектов, которые характеризуются конечным набором некоторых свойств и признаков. Такие задачи решаются довольно часто, например, при переходе или проезде улицы по сигналам светофора. Распознавание цвета загоревшейся лампы светофора и знание правил дорожного движения позволяет принять правильное решение о том, можно или нельзя переходить улицу.
Нейрокомпьютер — устройство переработки информации на основе принципов работы естественных нейронных систем. Эти принципы были формализованы, что позволило говорить о теории искусственных нейронных сетей. Проблематика же нейрокомпьютеров заключается в построении реальных физических устройств, что позволит не просто моделировать искусственные нейронные сети на обычном компьютере, но так изменить принципы работы компьютера, что станет возможным говорить о том, что они работают в соответствии с теорией искусственных нейронных сетей.

Перцептро́н — математическая или компьютерная модель восприятия информации мозгом, предложенная Фрэнком Розенблаттом в 1957 году и впервые воплощённая в виде электронной машины «Марк-1» в 1960 году. Перцептрон стал одной из первых моделей нейросетей, а «Марк-1» — первым в мире нейрокомпьютером.

Перцептрон является одной из первых моделей искусственной нейронной сети. Несмотря на то, что модель предложена Фрэнком Розенблаттом в 1957 году, о её возможностях и ограничениях до сегодняшнего дня не всё известно. В 1969 году Марвин Минский и Сеймур Паперт посвятили критике перцептрона целую книгу, которая показала некоторые принципиальные ограничения одной из разновидности перцептронов.

Нейрокомпьютерный интерфейс (НКИ) — система, созданная для обмена информацией между мозгом и электронным устройством. В однонаправленных интерфейсах внешние устройства могут либо принимать сигналы от мозга, либо посылать ему сигналы. Двунаправленные интерфейсы позволяют мозгу и внешним устройствам обмениваться информацией в обоих направлениях. В основе нейрокомпьютерного интерфейса часто используется метод биологической обратной связи.

Джеффри Хи́нтон — британский и канадский учёный, внёсший заметный вклад в глубокое обучение.

Маши́на Бо́льцмана — вид стохастической рекуррентной нейронной сети, изобретенной Джеффри Хинтоном и Терри Сейновски в 1985 году. Машина Больцмана может рассматриваться как стохастический генеративный вариант сети Хопфилда.

Ян Лекун — французский и американский учёный в области информатики, основные сферы деятельности — машинное обучение, компьютерное зрение, мобильная робототехника и вычислительная нейробиология. Известен работами по применению нейросетей к задачам оптического распознавания символов и машинного зрения. Один из основных создателей технологии сжатия изображений DjVu. Вместе с Леоном Боту создал язык программирования Lush.

Свёрточная нейронная сеть — специальная архитектура искусственных нейронных сетей, предложенная Яном Лекуном в 1988 году и нацеленная на эффективное распознавание образов, входит в состав технологий глубокого обучения. Использует некоторые особенности зрительной коры, в которой были открыты так называемые простые клетки, реагирующие на прямые линии под разными углами, и сложные клетки, реакция которых связана с активацией определённого набора простых клеток. Таким образом, идея свёрточных нейронных сетей заключается в чередовании свёрточных слоёв и субдискретизирующих слоёв. Структура сети — однонаправленная, принципиально многослойная. Для обучения используются стандартные методы, чаще всего метод обратного распространения ошибки. Функция активации нейронов — любая, по выбору исследователя.

Автокодировщик — специальная архитектура искусственных нейронных сетей, позволяющая применять обучение без учителя при использовании метода обратного распространения ошибки. Простейшая архитектура автокодировщика — сеть прямого распространения, без обратных связей, наиболее схожая с перцептроном и содержащая входной слой, промежуточный слой и выходной слой. В отличие от перцептрона, выходной слой автокодировщика должен содержать столько же нейронов, сколько и входной слой.
Глубокое обучение — совокупность методов машинного обучения, основанных на обучении представлениям, а не специализированных алгоритмах под конкретные задачи. Многие методы глубокого обучения были известны ещё в 1980-е, но результаты не впечатляли, пока продвижения в теории искусственных нейронных сетей и вычислительные мощности середины 2000-х годов не позволили создавать сложные технологические архитектуры нейронных сетей, обладающие достаточной производительностью и позволяющие решать широкий спектр задач, не поддававшихся эффективному решению ранее, например, в компьютерном зрении, машинном переводе, распознавании речи, причём качество решения во многих случаях теперь сопоставимо, а в некоторых превосходит эффективность человека.

Длинная цепь элементов краткосрочной памяти — разновидность архитектуры рекуррентных нейронных сетей, предложенная в 1997 году Зеппом Хохрайтером и Юргеном Шмидхубером. Как и большинство рекуррентных нейронных сетей, LSTM-сеть является универсальной в том смысле, что при достаточном числе элементов сети она может выполнить любое вычисление, на которое способен обычный компьютер, для чего необходима соответствующая матрица весов, которая может рассматриваться как программа. В отличие от традиционных рекуррентных нейронных сетей, LSTM-сеть хорошо приспособлена к обучению на задачах классификации, обработки и прогнозирования временных рядов в случаях, когда важные события разделены временными лагами с неопределённой продолжительностью и границами. Относительная невосприимчивость к длительности временных разрывов даёт LSTM преимущество по отношению к альтернативным рекуррентным нейронным сетям, скрытым марковским моделям и другим методам обучения для последовательностей в различных сферах применения. Из множества достижений LSTM-сетей можно выделить наилучшие результаты в распознавании несегментированного слитного рукописного текста, и победу в 2009 году на соревнованиях по распознаванию рукописного текста (ICDAR). LSTM-сети также используются в задачах распознавания речи, например LSTM-сеть была основным компонентом сети, которая в 2013 году достигла рекордного порога ошибки в 17,7 % в задаче распознавания фонем на классическом корпусе естественной речи TIMIT. По состоянию на 2016 год ведущие технологические компании, включая Google, Apple, Microsoft и Baidu, используют LSTM-сети в качестве фундаментального компонента новых продуктов.
Исключение или дропаут — метод регуляризации искусственных нейронных сетей, предназначен для уменьшения переобучения сети за счет предотвращения сложных коадаптаций отдельных нейронов на тренировочных данных во время обучения.

TensorFlow — открытая программная библиотека для машинного обучения, разработанная компанией Google для решения задач построения и тренировки нейронной сети с целью автоматического нахождения и классификации образов, достигая качества человеческого восприятия. Применяется как для исследований, так и для разработки собственных продуктов Google. Основной API для работы с библиотекой реализован для Python, также существуют реализации для R, C#, C++, Haskell, Java, Go, JavaScript и Swift.
Google Brain — это исследовательский проект Google по изучению искусственного интеллекта на основе глубокого обучения. В нём сочетаются открытые исследования в области машинного обучения с разработкой систем и вычислительными мощностями в масштабах Google.

Ограниченная машина Больцмана, сокращённо RBM — вид генеративной стохастической нейронной сети, которая определяет распределение вероятности на входных образцах данных.
Нейро́нный проце́ссор — это специализированный класс микропроцессоров и сопроцессоров, используемый для аппаратного ускорения работы алгоритмов искусственных нейронных сетей, компьютерного зрения, распознавания по голосу, машинного обучения и других методов искусственного интеллекта.

В искусственных нейронных сетях функция активации нейрона определяет выходной сигнал, который определяется входным сигналом или набором входных сигналов. Стандартная компьютерная микросхема может рассматриваться как цифровая сеть функций активации, которые могут принимать значения «ON» (1) или «OFF» (0) в зависимости от входа. Это похоже на поведение линейного перцептрона в нейронных сетях. Однако только нелинейные функции активации позволяют таким сетям решать нетривиальные задачи с использованием малого числа узлов. В искусственных нейронных сетях эта функция также называется передаточной функцией.
Веретенообразная извилина — также известна как боковая затылочно-височная извилина, часть височной доли и затылочной доли в поле 37 по Бродману. Веретенообразная извилина расположена ниже язычной извилины и парагиппокампальной извилины и выше нижней височной извилины. Хотя функциональность веретенообразной извилины ещё не до конца исследована, она связана со множеством нейронных путей, ответственных за визуальное и иное распознавание. Также она вовлечена в разные нейробиологические феномены, такие как синестезия, дислексия и прозопагнозия.