Квантовое преобразование Фурье эффективно исполняется на квантовых компьютерах путём специального разложения матрицы в произведение более простых унитарных матриц. С помощью такого разложения, дискретное преобразование Фурье на входных амплитудах может быть осуществлено квантовой сетью, состоящей из вентилей Адамара и контролируемых квантовых вентилей, где — число кубитов[1]. По сравнению с классическим ДПФ, использующим элементов памяти ( — количество бит), что экспоненциально больше, чем квантовых вентилей КПФ.
Наилучшие из известных алгоритмов квантового преобразования Фурье (по состоянию на конец 2000) задействуют только вентилей для достижения желаемого приближения результата[2].
Квантовое преобразование Фурье — классическое дискретное преобразование Фурье, применённое к вектору амплитуд квантовых состояний. Обычно рассматривают такие вектора, имеющие длину . Классическое преобразование Фурье действует на вектор и отображает его в вектор по формуле:
Симуляция квантовой цепи, состоящей из двух кубитов с использованием Q-Kit
Большинство свойств КПФ следует из того, что данное преобразование унитарно. Этот факт легко проверяется путём умножения матриц, где — эрмитово-сопряжённая матрица к .
Из унитарных свойств следует, что обратное к КПФ преобразование имеет матрицу, эрмитово-сопряжённую к матрице преобразования Фурье, поэтому . Если существует эффективная квантовая сеть, осуществляющая КПФ, то эта же сеть может быть запущена в обратную сторону для проведения обратного квантового преобразования Фурье. А это значит, что оба преобразования могут работать эффективно на квантовом компьютере.
Симуляции квантовых сетей двух возможных вариантов 2-кубитового КПФ, использующего и , показаны для демонстрации идентичного результата (используется Q-Kit).
Квантовая сеть КПФ с n кубитами (инвертированный порядок выходных кубитов). Использует понятие двоичного разложения, введённое ниже.
В преобразовании используются только линейные квантовые операции, чтобы задание функции для каждого из базисных состояний позволяло определить смешанные состояния из линейности. Это отличается от определения состояний в обычном преобразовании Фурье. Задать преобразование Фурье в обычном смысле — описать то, как получается результат для произвольных входных данных. Но здесь, как и во многих других случаях, проще описать поведение конкретного базисного состояния и вычислять результат из линейности.
Сеть КПФ можно построить для любого числа входных амплитуд N; однако, это проще всего сделать в случае . Тогда получается Ортонормированная система из векторов
Базисные состояния перечисляют все возможные состояния кубитов:
где, по правилу тензорного суммирования, означает, что кубит находится в состоянии , с 0 либо 1. По соглашению, индекс базисного состояния указывает на возможные состояния этого кубита, то есть является двоичным разложением:
Также удобно использовать дробную двоичную нотацию:
Например, и
Используя эти обозначения, КПФ записывается коротко[5]:
или
Краткость налицо, представив двоичное разложение обратно в виде суммы
Видно, что выходной кубит 1 находится в суперпозиции состояний и , кубит 2 — в суперпозиции и и т. д. для остальных кубитов (см. схему-рисунок выше).
Другими словами, ДПФ, операция над n кубитами, может быть разложена в тензорное произведениеn однокубитных операций, Действительно, каждая из таких однокубитных операций эффективным образом реализуется на вентилях с контролируемой фазой и вентилях Адамара. Первый кубит потребует один вентиль Адамара и (n-1) вентилей с контролируемой фазой, второй потребует два вентиля Адамара и (n-2) вентилей с контролируемой фазой, и так далее (см. схему выше). В итоге потребуется вентилей, что квадратично полиномиально по отношению к количеству кубитов.
Пример
Рассмотрим квантовое преобразование Фурье на трёх кубитах. Математически оно записывается
где — простейший восьмой корень из единицы, удовлетворяющий (поскольку ).
Для сокращения, установим , тогда матричное представление КПФ на трёх кубитах
Это можно упростить, заметив , , , , и .
3-кубитное квантовое преобразование Фурье перепишется в виде
или
Для использования сети составим разложение КПФ в обратном порядке, а именно
На рисунке ниже представлена сеть для (с обратным порядком выходных кубитов по отношению к прямому КПФ).
КПФ для 3 кубитов (инвертированный порядок выходных кубитов)Возможная реализация 3-кубитной сети КПФ в Q-Kit
Как подсчитано выше, используется вентилей, что соответствует .
Ква́нтовая тео́рия по́ля (КТП) — раздел физики, изучающий поведение квантовых систем с бесконечно большим числом степеней свободы — квантовых полей; является теоретической основой описания микрочастиц, их взаимодействий и превращений. На языке КТП основываются физика высоких энергий и физика элементарных частиц, её математический аппарат используется в физике конденсированного состояния. КТП в виде Стандартной модели в настоящее время является единственной экспериментально подтверждённой теорией, способной описывать и предсказывать результаты экспериментов при достижимых в современных ускорителях высоких энергиях.
Преобразование Фурье́ — операция, сопоставляющая одной функции вещественной переменной другую функцию вещественной переменной. Эта новая функция описывает коэффициенты («амплитуды») при разложении исходной функции на элементарные составляющие — гармонические колебания с разными частотами.
Уравне́ние Шрёдингера — линейное дифференциальное уравнение в частных производных, описывающее изменение в пространстве и во времени чистого состояния, задаваемого волновой функцией, в гамильтоновых квантовых системах.
Де́льта-фу́нкция — обобщённая функция, которая позволяет записать точечное воздействие, а также пространственную плотность физических величин, сосредоточенных или приложенных в одной точке.
Эффект Шубникова — де Хааза назван в честь советского физика Л. В. Шубникова и нидерландского физика В. де Хааза, открывших его в 1930 году. Наблюдаемый эффект заключался в осцилляциях магнетосопротивления плёнок висмута при низких температурах. Позже эффект Шубникова — де Гааза наблюдали в многих других металлах и полупроводниках. Эффект Шубникова — де Гааза используется для определения тензора эффективной массы и формы поверхности Ферми в металлах и полупроводниках.
Преобразование Радона — интегральное преобразование функции многих переменных, родственное преобразованию Фурье. Впервые введено в работе австрийского математика Иоганна Радона 1917-го года.
В термодинамике и физике твёрдого тела модель Дебая — метод, развитый Дебаем в 1912 г. для оценки фононного вклада в теплоёмкость твёрдых тел. Модель Дебая рассматривает колебания кристаллической решётки как газ квазичастиц — фононов. Эта модель правильно предсказывает теплоёмкость при низких температурах, которая, согласно закону Дебая, пропорциональна . В пределе высоких температур теплоёмкость стремится к 3R, согласно закону Дюлонга — Пти.
Алгори́тм Шо́ра — квантовый алгоритм факторизации, позволяющий разложить число за время , используя логических кубитов.
Дискретное преобразование Фурье — это одно из преобразований Фурье, широко применяемых в алгоритмах цифровой обработки сигналов, а также в других областях, связанных с анализом частот в дискретном сигнале.
В квантовой физике золотое правило Ферми — это формула, которая использует временную теорию возмущений в нерелятивистской квантовой механике и описывает скорость перехода их одного собственного состояния энергии квантовой системы к группе собственных состояний энергии в непрерывном спектре (континууме) в результате слабого возмущения. Эта скорость перехода фактически не зависит от времени и пропорциональна силе связи между начальным и конечным состояниями системы, а также плотности состояний. Золотое правило Ферми также применимо, когда конечное состояние дискретно, то есть оно не является частью континуума, если в процессе имеет место некоторая декогеренция, например релаксация или столкновение атомов, или шум в возмущении, и в этом случае плотность состояний заменяется выражением, учитывающим конечное время жизни.
Z-преобразованием называют свёртывание исходного сигнала, заданного последовательностью вещественных чисел во временно́й области, в аналитическую функцию комплексной частоты. Если сигнал представляет импульсную характеристику линейной системы, то коэффициенты Z-преобразования показывают отклик системы на комплексные экспоненты , то есть на гармонические осцилляции с различными частотами и скоростями нарастания/затухания.
В алгебре корень Бринга или ультрарадикал — это аналитическая функция , задающая единственный действительный корень многочлена . Иначе говоря, для любого верно, что
Ква́нтовый гармони́ческий осцилля́тор — физическая модель в квантовой механике, представляющая собой параболическую потенциальную яму для частицы массой и являющаяся аналогом простого гармонического осциллятора. При анализе поведения данной системы рассматриваются не силы, действующие на частицу, а гамильтониан, то есть полная энергия осциллятора, причём потенциальная энергия предполагается квадратично зависящей от координат. Учёт следующих слагаемых в разложении потенциальной энергии по координате ведёт к понятию ангармонического осциллятора.
Волна́ де Бро́йля — волна вероятности, определяющая плотность вероятности обнаружения объекта в заданном интервале конфигурационного пространства. В соответствии с принятой терминологией говорят, что волны де Бройля связаны с любыми частицами и отражают их волновую природу.
Фо́рмула Пла́нка — формула, описывающая спектральную плотность излучения, которое создаётся абсолютно чёрным телом определённой температуры. Формула была открыта Максом Планком в 1900 году и названа по его фамилии. Её открытие сопровождалось появлением гипотезы о том, что энергия может принимать только дискретные значения. Эта гипотеза некоторое время после открытия не считалась значимой, но, как принято считать, дала рождение квантовой физике.
Тригонометрический ряд Фурье — представление произвольной функции с периодом в виде ряда
Пропагатор в квантовой механике и квантовой теории поля (КТП) — функция, характеризующая распространение релятивистского поля от одного акта взаимодействия до другого. Эта функция определяет амплитуду вероятности перемещения частицы из одного места пространства в другое за заданный промежуток времени или перемещения частицы с определённой энергией и импульсом. Для расчёта частоты столкновений в КТП используются виртуальные частицы, представленные в диаграммах Фейнмана пропагаторами, вносят свой вклад в вероятность рассеяния, описываемого соответствующей диаграммой. Их также можно рассматривать как оператор, обратный волновому оператору, соответствующему частице, и поэтому их часто называют (причинными) функциями Грина.
Ста́рая ква́нтовая тео́рия — подход к описанию атомных явлений, который был развит в 1900—1924 годах и предшествовал созданию квантовой механики. Характерная черта этой теории — одновременное использование классической механики и некоторых предположений, вступавших в противоречие с ней. Основа старой квантовой теории — модель атома Бора, к которой позднее Арнольд Зоммерфельд добавил квантование z-компоненты углового момента, неудачно названное пространственным квантованием. Квантование z-компоненты дало возможность ввести эллиптические электронные орбиты и предложить концепцию энергетического вырождения. Успех старой квантовой теории состоял в корректном описании атома водорода и нормального эффекта Зеемана.
Теория Линдхард — метод расчета эффекта экранировки электрического поля электронами в твердом теле. Он базируется на квантовой механике в пpиближении случайных фаз.
В теории многих тел термин функция Грина иногда используется как синоним корреляционной функции, но относится к корреляторам операторов поля или операторам рождения и уничтожения.
Эта страница основана на статье Википедии. Текст доступен на условиях лицензии CC BY-SA 4.0; могут применяться дополнительные условия. Изображения, видео и звуки доступны по их собственным лицензиям.