
Информа́тика — наука о методах и процессах сбора, хранения, обработки, передачи, анализа и оценки информации с применением компьютерных технологий, обеспечивающих возможность её использования для принятия решений.

Ква́нтовый компью́тер — вычислительное устройство, которое использует явления квантовой механики для передачи и обработки данных. Квантовый компьютер оперирует не битами, а кубитами, имеющими значения одновременно и 0, и 1. Теоретически это позволяет обрабатывать все возможные состояния одновременно, достигая существенного преимущества над обычными компьютерами в ряде алгоритмов.
Ква́нтовая запу́танность — квантовомеханическое явление, при котором квантовые состояния двух или большего числа объектов оказываются взаимозависимыми. Например, можно получить пару фотонов, находящихся в запутанном состоянии, и тогда если при измерении спина первой частицы её спиральность оказывается положительной, то спиральность второй всегда оказывается отрицательной, и наоборот.
Квантовый алгоритм — алгоритм, предназначенный для выполнения на квантовом компьютере.
Сверхтьюринговыми вычислениями называются такие вычисления, которые не могут быть проделаны на машине Тьюринга. Они включают в себя разнообразные гипотетические методы, основанные на суперрекурсивных алгоритмах, а также некоторые другие типы вычислений — например, интерактивные вычисления. Термин гипервычисления был впервые введён Джеком Коуплендом и Дианой Праудфут. Возможность физической реализации таких вычислений активно обсуждается.
Языки квантового программирования — языки программирования, позволяющие выражать квантовые алгоритмы с использованием высокоуровневых конструкций. Их цель не столько создание инструмента для программистов, сколько предоставление средств для исследователей для облегчения понимания работы квантовых вычислений.
Цифровая физика — совокупность теоретических взглядов, основанных на интерпретации, что Вселенная по сути является информацией и, следовательно, является вычислимой. Из данной идеи следует, что Вселенная может пониматься как результат работы некоторой компьютерной программы или как некий вид цифрового вычислительного устройства.
Квантовая нанотехнология — область исследований нанотехнологий, основанных на квантовой теории. В квантовых нанотехнологиях основное внимание уделяется использованию квантовых феноменов в наноматериалах и наносистемах. При этом квантовая механика и квантовая электродинамика применяются для создания новых наноматериалов и наноустройств, фукционирование и структура которых объясняется через квантовую сцепленность состояний, квантовую суперпозицию чистых состояний, и дискретность (квантованность) энергии квантовых состояний.
Квантовая технология — область физики, в которой используются специфические особенности квантовой механики, прежде всего квантовая запутанность. Цель квантовой технологии состоит в том, чтобы создать системы и устройства, основанные на квантовых принципах, к которым обычно относят следующие:
- Дискретность (квантованность) уровней энергии
- Принцип неопределённости Гейзенберга
- Квантовая суперпозиция чистых состояний систем
- Квантовое туннелирование через потенциальные барьеры
- Квантовую сцепленность состояний

Питер Шор — американский учёный. Автор работ в области геометрии, теории вероятностей, комбинаторики, теории алгоритмов и квантовой информатики. Наиболее известен своими основополагающими результатами в теории квантовых вычислений.
Идея квантовых вычислений была независимо предложена Юрием Маниным и Ричардом Фейнманом в начале 1980-х. С тех пор была проделана колоссальная работа для построения работающего квантового компьютера.
Целочисленная сортировка — задача сортировки некоторого набора значений при помощи целочисленных ключей. Алгоритмы целочисленной сортировки можно применять и для задач, в которых ключами являются числа с плавающей запятой или текстовые строки. Возможность выполнения целочисленных арифметических операций над ключами позволяет алгоритмам целочисленной сортировки быть во многих случаях быстрее, чем аналогичные алгоритмы сортировки с использованием сравнений, в зависимости от допустимых в модели вычислений операций и величины чисел-ключей.
Параллелизм на уровне команд является мерой того, какое множество операций в компьютерной программе может выполняться одновременно. Потенциальное совмещение выполнения команд называется «параллелизмом на уровне команд».
Обратимые вычисления — модель вычислений, в которой процесс вычисления является в некоторой степени обратимым. Например, в вычислительной модели, использующей наборы состояний и переходов между ними, необходимым условием обратимости вычислений является возможность построения однозначного (инъективного) отображения каждого состояния в следующее за ним. На XX век и начало XXI века обратимые вычисления обычно относят к нетрадиционным моделям вычислений.
Квантовое машинное обучение — раздел науки на стыке квантовой физики и информатики, в котором разрабатываются и изучаются методы машинного обучения, способные эффективно задействовать параллелизм квантовых компьютеров.
D-Wave Systems — канадская компания, специализирующаяся на создании квантовых компьютеров. Компьютеры D-Wave являются не универсальными квантовыми компьютерами, а вычислителями, пригодными для некоторых задач. Компьютеры D-Wave закупались в исследовательских целях компаниями Google, Lockheed Martin и Temporal Defense Systems, а также агентством NASA.
IonQ — компания по производству аппаратного и программного обеспечения для квантовых вычислений, расположенная в Колледж-Парке, штат Мэриленд. Занимается разработкой квантового компьютера на ловушках для ионов и соответствующего программного обеспечения для генерации, оптимизации и выполнения квантовых схем.
Ква́нтовое превосхо́дство — способность квантовых вычислительных устройств решать проблемы, которые классические компьютеры практически не могут решить. Квантовое преимущество — возможность решать проблемы быстрее. С точки зрения теории сложности вычислений под этим обычно подразумевается обеспечение суперполиномиального ускорения по сравнению с наиболее известным или возможным классическим алгоритмом. Термин был популяризирован Джоном Прескиллом, но концепция квантового вычислительного преимущества, особенно в моделировании квантовых систем, восходит к предложению квантовых вычислений, которое дали Юрий Манин (1980) и Ричард Фейнман (1981).
Сверхпроводящие квантовые вычисления — раздел твердотельных квантовых вычислений, в котором сверхпроводящие электронные схемы реализуются с использованием сверхпроводящих кубитов в качестве искусственных атомов или квантовых точек. Для сверхпроводящих кубитов двумя логическими состояниями являются основное состояние и возбужденное состояние, обозначаемые
соответственно. Исследования в области сверхпроводящих квантовых вычислений проводятся такими компаниями, как Google, IBM, IMEC, BBN Technologies, Rigetti и Intel. Многие недавно разработанные квантовые процессоры используют сверхпроводящую архитектуру.