Логика первого порядка — формальное исчисление, допускающее высказывания относительно переменных, фиксированных функций и предикатов. Расширяет логику высказываний.
Предика́т — это утверждение, высказанное о субъекте. Субъектом высказывания называется то, о чём делается утверждение. В лингвистике субъекту соответствует подлежащее, а предикату — сказуемое.
Логика второго порядка в математической логике — формальная система, расширяющая логику первого порядка возможностью квантификации общности и существования не только над переменными, но и над предикатами и функциональными символами. Логика второго порядка несводима к логике первого порядка. В свою очередь, она расширяется логикой высших порядков и теорией типов.
Выска́зывание в математической логике — предложение, выражающее суждение. Если суждение, составляющее содержание (смысл) некоторого высказывания, истинно, то и о данном высказывании говорят, что оно истинно. Сходным образом ложным называют такое высказывание, которое является выражением ложного суждения. Истинность и ложность называются логическими, или истинностными, значениями высказываний.
Ква́нтор — общее название для логических операций, ограничивающих область истинности какого-либо предиката и создающих высказывание. Чаще всего упоминают:
- Квантор всеобщности.
- Квантор существования.
- Квантор единственности.
Мода́льная ло́гика — логика, в которой кроме стандартных логических связок, переменных и предикатов есть модальности.
Отноше́ние — математическая структура, которая формально определяет свойства различных объектов и их взаимосвязи. Распространёнными примерами отношений в математике являются равенство (=), делимость, подобие, параллельность и многие другие.
Теория моделей — раздел математической логики, который занимается изучением связи между формальными языками и их интерпретациями или моделями. Название теория моделей было впервые предложено Альфредом Тарским в 1954 году. Основное развитие теория моделей получила в работах Тарского, Мальцева и Робинсона.
Квантор всеобщности — условие, которое верно для всех обозначенных элементов, в отличие от квантора существования, где условие верно только для каких-то отдельных элементов из указанного множества. Формально это квантор, используемый для обозначения того, что множество целиком лежит в области истинности указанного предиката. Читается как «для всех…», «для каждого…», «для любого…» или «все…», «каждый…», «любой…».
Дескрипцио́нная логика — язык представления знаний, позволяющий описывать понятия предметной области в недвусмысленном, формализованном виде, организованный по типу языков математической логики. Дескрипционные логики сочетают, с одной стороны, богатые выразительные возможности, а с другой — хорошие вычислительные свойства, такие как разрешимость и относительно невысокая вычислительная сложность основных логических проблем, что делает возможным их применение на практике, обеспечивая компромисс между выразительностью и разрешимостью. Могут быть рассмотрены как разрешимые фрагменты логики предикатов, синтаксически же они близки к модальным логикам.
Силлогистика — теория логического вывода, исследующая умозаключения, состоящие из категорических высказываний (суждений).
Математические обозначения — графическая система обозначений, служащая для изложения абстрактных математических идей и суждений в человеко-читаемой форме. Составляет значительную долю неречевых знаковых систем, применяемых человечеством. В данной статье описывается общепринятая международная система обозначений, хотя различные культуры прошлого имели свои собственные, и некоторые из них даже имеют ограниченное применение до сих пор.
Арифметическое множество — множество натуральных чисел , которое может быть определено формулой в языке арифметики первого порядка, то есть если существует такая формула с одной свободной переменной , что . Аналогично, множество кортежей натуральных чисел называется арифметическим, если существует такая формула , что . Также можно говорить об арифметических множествах кортежей натуральных чисел, конечных последовательностей натуральных чисел, формул и, вообще, об арифметических множествах любых объектов, кодируемых натуральными числами.
Система аксиом фон Неймана — Бернайса — Гёделя в метаматематике — одна из основных аксиоматических теорий множеств. Эта система является расширением канонической теории Цермело — Френкеля с аксиомой выбора (ZFC). Предложения, сформулированные на языке теории ZFC, доказуемы в ZFC тогда и только тогда, когда они доказуемы в NBG.
Предложения Рамсея — формальное логическое построение, заложенное Фрэнком Рамсеем и развитое Рудольфом Карнапом. Предложения Рамсея направлены на решение вопроса об эмпирическом статусе теоретических терминов и их разграничении с метафизическими терминами. В своих работах Рамсей и Карнап стремились предоставить предложениям, состоящим из теоретических терминов, статус терминов наблюдения.
В теории множеств и его приложениях к логике, математике и информатике форма записи множества — это математические обозначения для описания множества путём перечисления его элементов или указания свойств, которым элементы множества должны удовлетворять.
Натуральный вывод — тип логических исчислений, использующий для доказательства утверждений правила вывода, близкие к обычным содержательным методам рассуждений.
Схема свёртывания — схема аксиом наивной теории множеств; неформально говорит о том, что для каждого свойства существует множество, состоящее в точности из тех элементов, что удовлетворяют этому свойству. Схема свёртывания формализует известное дидактическое определение множества, гласящее, что «множество — это совокупность элементов, обладающих общим свойством». На языке логики предикатов схема свёртывания записывается следующим образом:
- ,
Проблема множественной общности — проблема описания традиционной логикой некоторых интуитивно понятных, общезначимых умозаключений.