
Глаз — сенсорный орган животных, обладающий способностью воспринимать электромагнитное излучение в видимом диапазоне длин волн и обеспечивающий функцию зрения. У человека через глаз поступает около 90 % информации из окружающего мира.

Сетча́тка — внутренняя оболочка глаза, являющаяся периферическим отделом зрительного анализатора; содержит фоторецепторные клетки, обеспечивающие восприятие и преобразование электромагнитного излучения видимой части спектра в нервные импульсы, а также обеспечивает их первичную обработку.

Па́лочки — один из двух типов фоторецепторов, периферических отростков светочувствительных клеток сетчатки глаза, названный так за свою цилиндрическую форму. В сетчатке глаза человека содержится приблизительно около 120 миллионов палочек. Размеры их невелики: длина палочек 0,06 мм, диаметр 0,002 мм. Это высокоспециализированные клетки, преобразующие световые раздражения в нервное возбуждение.

Ко́лбочки — один из двух типов фоторецепторов, периферических отростков светочувствительных клеток сетчатки глаза, названный так за свою коническую форму. Это высокоспециализированные клетки, преобразующие световые раздражения в нервное возбуждение, обеспечивают цветовое зрение. Другим типом фоторецепторов являются палочки.

{{subst:#invoke:Импортёр шаблона-карточки|main | НАЗВАНИЕ = Анатомическая карточка | *название \ Name | *изображение \ Image | ширина \ Width | *подпись \ Caption | изображение2 \ Image2 | ширина2 \ Width2 | подпись2 \ Caption2 | *латынь \ Latin | MeSH \ MeshName | MeshNumber | GraySubject | GrayPage | Dorlands | DorlandsID | *система \ System | *лимфа \ Lymph | *кровоснабжение \ Artery | *венозный отток \ Vein | *иннервация \ Nerve | *прекурсор \ Precursor }}

Реснички — органеллы, представляющие собой тонкие волосковидные структуры на поверхности эукариотических клеток. Длина их может составлять от 3—15 мкм до 2 мм. Могут быть подвижны или нет; неподвижные реснички играют роль рецепторов с помощью которых осуществляется воздействие сигнальных путей на клеточную активность, энергетику, состояния клеточной дифференцировки и развития органов.
Реце́птор — объединение из терминалей дендритов чувствительных нейронов, глии, специализированных образований межклеточного вещества и специализированных клеток других тканей, которые в комплексе обеспечивают превращение стимулов внешней или внутренней среды (раздражителей) в нервный импульс. В некоторых рецепторах раздражитель непосредственно воспринимается специализированными клетками эпителиального происхождения или видоизменёнными нервными клетками, которые не генерируют нервных импульсов, а действуют на иннервирующие их нервные окончания, изменяя секрецию медиатора. В других случаях единственным клеточным элементом рецепторного комплекса является само нервное окончание, часто связанное со специальными структурами межклеточного вещества.

Хориоидеа, или хориоидея — собственно сосудистая оболочка глаза. Хориоидея питает сетчатку и восстанавливает постоянно распадающиеся зрительные вещества. Она расположена под склерой.
В данный список включены клетки, которые присутствуют в теле взрослого человека. Не включены клетки эмбриональных тканей и клетки опухолей, а также другие типы патологически изменённых клеток. Некоторые клетки включены в несколько категорий, если их происхождение не соответствует локализации.
Рецептивное поле сенсорного нейрона — участок с рецепторами, которые при воздействии на них определённого стимула приводят к изменению возбуждения этого нейрона.
Концепция рецептивных полей может быть применима ко всей нервной системе. Если множество сенсорных рецепторов образует синапсы c единственным нейроном, они совместно формируют рецептивное поле этого нейрона. Например, рецептивное поле ганглионарной (ганглиозной) клетки сетчатки глаза представлено фоторецепторными клетками, а группа ганглионарных клеток, в свою очередь, создаёт рецептивное поле для одного из нейронов мозга. В итоге к одному нейрону более высокого синаптического уровня сходятся импульсы от многих фоторецепторов; и этот процесс называется конвергенцией.

Ганглионарная (ганглиозная) клетка — нервная клетка (нейрон) сетчатки глаза, способная генерировать нервные импульсы в отличие от других типов нейронов сетчатки. В их цитоплазме хорошо выражено базофильное вещество. Ганглионарные клетки граничат со стекловидным телом глаза и образуют слой сетчатки, который первым получает свет. Их аксоны по поверхности сетчатки направляются к слепому пятну, собираются в зрительный нерв и направляются в мозг. Аксоны ганглионарных клеток не миелинизированы при прохождении сетчатки, чтобы не препятствовать прохождению света. Далее они покрыты миелиновой оболочкой. Ганглионарные клетки завершают «трёхнейронную рецепторно-проводящую систему сетчатки»: фоторецептор — биполярный нейрон — ганглионарная клетка.

Глаз человека — парный сенсорный орган зрительной системы, обладающий способностью воспринимать электромагнитное излучение в световом диапазоне длин волн и обеспечивающий функцию зрения. Глаза расположены в передней части головы и вместе с веками, ресницами и бровями, являются важной частью лица. Область лица вокруг глаз активно участвует в мимике. Максимальный оптимум дневной чувствительности человеческого глаза приходится на максимум непрерывного спектра солнечного излучения, расположенный в «зелёной» области 550 (556) нм. При переходе от дневного освещения к сумеречному происходит перемещение максимума световой чувствительности по направлению к коротковолновой части спектра, и предметы красного цвета кажутся чёрными, синего (василёк) — очень светлыми.

Внутренняя пограничная мембрана — один из десяти слоёв сетчатки позвоночных. Образована базальной и плазматической мембраной клеток Мюллера, возможно, и других глиальных клеток. Здесь содержатся также коллагеновые волокна и протеогликаны.

Внутренний ядерный (зернистый) слой — один из десяти слоёв сетчатки позвоночных, содержит тела биполярных, амакриновых, горизонтальных и мюллеровских клеток. Ядра под световым микроскопом имеют зернистый вид.

{{subst:#invoke:Импортёр шаблона-карточки|main | НАЗВАНИЕ = Анатомическая карточка | *название \ Name | *изображение \ Image | ширина \ Width | *подпись \ Caption | изображение2 \ Image2 | ширина2 \ Width2 | подпись2 \ Caption2 | *латынь \ Latin | MeSH \ MeshName | MeshNumber | GraySubject | GrayPage | Dorlands | DorlandsID | *система \ System | *лимфа \ Lymph | *кровоснабжение \ Artery | *венозный отток \ Vein | *иннервация \ Nerve | *прекурсор \ Precursor }}
Хориокапилляры — капилляры собственно сосудистой оболочки глаза (хориоидеи). Образуют тонкую густую сосудистую сетку — хориокапиллярную пластинку, которая прилегает к мембране Бруха и обеспечивает питательными веществами внешние слои сетчатки. Сосудистая оболочка сетчатки — самая богатая сосудами ткань в человеческом организме. На её кровоснабжение приходится 98 % всего глазного кровотока: наружные отделы сетчатки снабжают кровью хориокапилляры. Во внутренние отделы кровь поступает из разветвлённой системы центральной артерии сетчатки. Хориокапилляры человека были впервые описаны Якобом Ховиусом в 1702 году, Даниель Эшрихт в 1838 году дал этой структуре научное название. В 1896 году Э. Пассера описал их как звездообразные, ветвящиеся капилляры под пигментным эпителием сетчатки. В 1961 году Стюарт Дюк-Элдер и Кеннет Уайбар отметили, что эта сеть капилляров расположена в одной плоскости.
Зре́ние млекопита́ющих — процесс восприятия млекопитающими видимого электромагнитного излучения, его анализа и формирования субъективных ощущений, на основании которых складывается представление животного о пространственной структуре внешнего мира. Отвечает за данный процесс у млекопитающих зрительная сенсорная система, основы которой сложились ещё на раннем этапе эволюции хордовых. Её периферическую часть образуют органы зрения (глаза), промежуточную — зрительные нервы, а центральную — зрительные центры в коре головного мозга.

Эпиретинальная мембрана — глазное заболевание как следствие нарушений в стекловидном теле, или, гораздо реже, диабета. Иначе она называется — макулярная складка. Иногда, как результат действий иммунной системы по защите сетчатки, клетки сходятся в макулярной области, так как стекловидного тело стареет и перемещается наружу, образуя отслоение стекловидного тела (PVD).PVD может незначительно повредить сетчатку, стимулируя экссудат, воспалительный и, как следствие, лейкоцитозный процессы. Эти клетки могут образовывать прозрачный слой постепенно, затягиваясь и создавая напряженность сетчаки, заставляя её выпирать в складки или даже вызвать вздутие или отек макулы. Это нередко приводит к искажениям поля зрения, которые представляются как струны с размытостью при взгляде на линии на листе бумаги в пределах макулярной области или в центре визуальной арки с координатами 1.0. Обычно это сначала происходит в одном глазу и может привести к бинокулярной диплопии или двоению в глазах, если изображение от одного глаза сильно отличается от другого. Искажения могут сделать объекты различными по размеру, особенно в центральной части поля зрения, создавая локализованные поля, пораженные анизейконией, которые нельзя полностью скорректировать оптически с помощью очков, хотя, даже частичная коррекция может значительно улучшить бинокулярность зрения. В молодости такие клетки могут тянуть несвязанно и распадаться самостоятельно; но у большинства больных, их состояние остается постоянным. Поскольку основные клетки фоторецепторов, палочки и колбочки, как правило, не повреждаются, если мембрана не становится слишком жесткой и твердой, то такая ситуация обычно не приводит к макулярной дегенерации.
Имплантаты сетчатки — класс биомедицинских технологий, способных заменить собой сетчатку человеческого глаза в случае её повреждения или дисфункции. В настоящее время имплантаты сетчатки разрабатываются рядом частных компаний и научно-исследовательских институтов по всему миру. Имплантат предназначен для частичного восстановления полезного зрения людям, потерявшим зрение из-за дегенеративных заболеваний глаз, таких как пигментный ретинит или макулярная дегенерация. В клинических испытаниях в настоящее время находятся три типа имплантатов сетчатки: эпиретинальные имплантаты, субретинальные имплантаты, и супрахориоидальные имплантаты. Имплантаты сетчатки предоставляют пользователю возможность видеть с низким разрешением с помощью электрической стимуляции сохранившихся клеток сетчатки. Такие изображения могут быть достаточными для восстановления некоторых визуальных способностей, таких как восприятие света и распознавание объектов.

Оппонентная теория — это теория цвета, которая утверждает, что зрительная система человека интерпретирует информацию о цвете, обрабатывая сигналы от колбочек и палочек антагонистическим образом. Оппонентная теория цвета предполагает, что есть три оппонентных канала, через которые объединены фоторецепторы, чтобы образовать три пары противоположных цветов: красный против зелёного, жёлтый против синего и чёрный против белого. Впервые она была предложена в 1892 немецким физиологом Эвальдом Герингом.