
Ква́нтовая (волнова́я) меха́ника — фундаментальная физическая теория, которая описывает природу в масштабе атомов и субатомных частиц. Она лежит в основании всей квантовой физики, включая квантовую химию, квантовую теорию поля, квантовую технологию и квантовую информатику.

Фи́зика конденси́рованного состоя́ния, также можно встретить название квантовая макрофизика — область физики, которая занимается исследованиями макроскопических и микроскопических свойств вещества (материи). В частности, это касается «конденсированных» фаз, которые появляются всякий раз, когда число составляющих вещество компонентов в системе чрезвычайно велико и взаимодействия между компонентами сильны. Наиболее знакомыми примерами конденсированных фаз являются твёрдые вещества и жидкости, которые возникают из-за взаимодействия между атомами. Физика конденсированных сред стремится понять и предсказать поведение этих фаз, используя физические законы. В частности, они включают законы квантовой механики, электромагнетизма и статистической механики.

Кварк — бесструктурная элементарная частица и фундаментальная составляющая материи. Кварки объединяются в составные частицы, называемые адронами, наиболее стабильными из которых являются протоны и нейтроны, компоненты атомных ядер. Всё обычно наблюдаемое вещество состоит из верхних кварков, нижних кварков и электронов. Из-за явления, известного как удержание цвета, кварки никогда не встречаются изолированно; их можно найти только в составе адронов, которые включают барионы и мезоны, или в кварк-глюонной плазме. По этой причине много информации о кварках было получено из наблюдений за адронами.

Глюо́н — элементарная безмассовая частица, фундаментальный бозон, квант векторного поля, переносчик сильного взаимодействия.

Фото́н — фундаментальная частица, квант электромагнитного излучения в виде поперечных электромагнитных волн и переносчик электромагнитного взаимодействия. Это безмассовая частица, способная существовать, только двигаясь со скоростью света. Электрический заряд фотона равен нулю. Фотон может находиться только в двух спиновых состояниях с проекцией спина на направление движения (спиральностью) ±1. В физике фотоны обозначаются буквой γ.
Постоя́нная то́нкой структу́ры, обычно обозначаемая как
, является фундаментальной физической постоянной, характеризующей силу электромагнитного взаимодействия. Она была введена в 1916 году немецким физиком Арнольдом Зоммерфельдом в качестве меры релятивистских поправок при описании атомных спектральных линий в рамках модели атома Бора, то есть характеризует так называемую тонкую структуру спектральных линий. Поэтому иногда она также называется постоянной Зоммерфельда.

Фримен Джон Да́йсон — американский физик-теоретик английского происхождения, один из создателей квантовой электродинамики.
Крото́вая нора́, или «крото́вина», «кротови́на», а также «червячный переход» или «червото́чина» — топологическая особенность пространства-времени, представляющая собой в каждый момент времени «тоннель» в пространстве. Эти области могут быть как связаны и помимо кротовой норы, представляя собой области единого пространства, так и полностью разъединены, представляя собой отдельные пространства, связанные между собой только посредством кротовой норы.

Андре́й Семёнович Ло́сев — российский физик-теоретик. Доктор физико-математических наук, профессор факультета математики НИУ ВШЭ. Старший научный сотрудник ИТЭФ.

Синхрофазотрон ОИЯИ — слабофокусирующий протонный ускоритель типа синхрофазотрон на энергию до 10 ГэВ, находящийся в Объединённом институте ядерных исследований.

Двухщелево́й опыт в современной физике является демонстрацией того, что свет и материя в целом могут проявлять характеристики как классических волн, так и частиц; кроме того, он отображает фундаментально вероятностный характер квантово-механических явлений. Впервые опыт был проведён Томасом Юнгом со светом в 1801 году. В 1927 году Дэвиссон и Гермер продемонстрировали, что электроны проявляют такое же поведение, которое позднее расширено на атомы и молекулы.

Амплитуэдр — геометрическая структура, введенная в 2013 году Нимой Аркани-Хамедом и Ярославом Трнкой. Он позволяет упростить расчёт взаимодействия частиц в некоторых квантовых теориях поля. В планарной N = 4 суперсимметричной теории Янга — Миллса, также эквивалентной пертурбативной топологической B-модели теории струн в твисторном пространстве, амплитуэдр определяется как математическое пространство, известное как позитивный грассманиан.
Идея квантовых вычислений была независимо предложена Юрием Маниным и Ричардом Фейнманом в начале 1980-х. С тех пор была проделана колоссальная работа для построения работающего квантового компьютера.

Стэнли Мандельстам — американский физик-теоретик южноафриканского происхождения, работавший в области физики элементарных частиц, квантовой теории поля и теории струн.
Сильван Сэмюэл Швебер — американский физик-теоретик и историк науки, известный своими работами по истории физики и биологии.
Джанкарло Гирарди — итальянский физик-теоретик, автор работ, посвящённых фундаментальным проблемам квантовой механики, один из авторов теории Гирарди — Римини — Вебера.

Квантовое байесианство или квантовый байесианизм, в англоязычной литературе сокращённо QBism или просто кьюбизм, — одна из интерпретаций квантовой механики, в центре которой ставятся действия и опыт агента. Подобная интерпретация отличается применением субъективной байесовской оценки вероятностей с целью понимания правила Борна как нормативного дополнения к принятию правильных решений. Квантовый байесианизм уходит корнями в работы Картлона Кейвза, Кристофера Фукса и Рюдигера Шака начала 2000-х годов, в первую очередь ассоциируясь с работами Фукса и Шака, и был недавно принят Дэвидом Мермином. Основами для квантового байесианства служат теория квантовой информации и байесовская вероятность, цель байесианства — разрешить интерпретационные проблемы, которые окружают квантовую теорию. Исторически кьюбистская интерпретация является производной от копенгагенской интерпретации квантовой механики, но всё же отличается от неё. Теодор Хенш охарактеризовал байесианизм как течение, видоизменяющее прежние взгляды и представляющее их как более последовательные. В целом любая работа, которая использует байесовское или субъективное отношение к вероятностям, возникающим в квантовой теории, называется «квантовой байесовской». Байесианство, в частности, называется «радикальной байесовской интерпретацией».
Энн Элизабет Нельсон — американский физик-теоретик, известная работами по физике элементарных частиц.

Сабина Хоссенфельдер — немецкий физик-теоретик и популяризатор науки, специалист в области квантовой гравитации.
Большие дополнительные измерения, ADD,LED — собирательное название теорий физики элементарных частиц, предполагающих что четырёхмерное пространство-время Стандартной модели располагается на бране, погруженной в многомерное пространство, включающее, помимо четырёхмерного пространства-времени, большие или бесконечные дополнительные измерения. Электромагнитное, сильное и слабое взаимодействия действуют внутри четырех измерений этой браны, а гравитоны, кроме того, могут распространяться через дополнительные измерения. Предполагается, что на основе таких теорий можно найти решение ряда физических проблем: проблемы иерархии, проблемы космологической постоянной и т.д. Идея больших дополнительных измерений была выдвинута Нимой Аркани-Хамедом, Савасом Димопулосом и Джиа Двали в 1998 году. Предполагается, что излучение гравитонов в дополнительные измерения позволит экспериментально проверить теорию больших дополнительных измерений на современных ускорителях при энергиях столкновения порядка ТэВ. Один из способов проверить теорию заключается в столкновении двух протонов в Большом адронном коллайдере или электрона и позитрона в электронном ускорителе так, чтобы при их столкновении образовался гравитон, который мог бы излучиться в дополнительные измерения, что привело бы к уменьшению наблюдаемой энергии и поперечного импульса. До сих пор ни один эксперимент на Большом адронном коллайдере не обнаружил подобного эффекта.