Шифрова́ние — обратимое преобразование информации в целях сокрытия от неавторизованных лиц с предоставлением в это же время авторизованным пользователям доступа к ней. Главным образом, шифрование служит для соблюдения конфиденциальности передаваемой информации. Важной особенностью любого алгоритма шифрования является использование ключа, который утверждает выбор конкретного преобразования из совокупности возможных для данного алгоритма.
Комбинато́рика — раздел математики, посвящённый решению задач, связанных с выбором и расположением элементов некоторого множества в соответствии с заданными правилами. Каждое такое правило определяет некоторую выборку из элементов исходного множества, которая называется комбинаторной конфигурацией. Простейшими примерами комбинаторных конфигураций являются перестановки, сочетания и размещения.

Задача коммивояжёра — одна из самых известных задач комбинаторной оптимизации, заключающаяся в поиске самого выгодного маршрута, проходящего через указанные города хотя бы по одному разу с последующим возвратом в исходный город. В условиях задачи указываются критерий выгодности маршрута и соответствующие матрицы расстояний, стоимости и тому подобного. Как правило, указывается, что маршрут должен проходить через каждый город только один раз — в таком случае выбор осуществляется среди гамильтоновых циклов. Существует несколько частных случаев общей постановки задачи, в частности, геометрическая задача коммивояжёра, метрическая задача коммивояжёра, симметричная и асимметричная задачи коммивояжёра. Также существует обобщение задачи, так называемая обобщённая задача коммивояжёра.
Перебор делителей — алгоритм факторизации или тестирования простоты числа путём полного перебора всех возможных потенциальных делителей.
Алгоритм Гровера — квантовый алгоритм решения задачи перебора, то есть нахождения решения уравнения

В теории алгоритмов классом NP называют множество задач разрешимости, решение которых возможно проверить на машине Тьюринга за время, не превосходящее значения некоторого многочлена от размера входных данных, при наличии некоторых дополнительных сведений.

Задача о рюкзаке — NP-полная задача комбинаторной оптимизации. Своё название получила от конечной цели: уложить как можно большее число ценных вещей в рюкзак при условии, что вместимость рюкзака ограничена. С различными вариациями задачи о рюкзаке можно столкнуться в экономике, прикладной математике, криптографии и логистике.
Комбинаторная оптимизация — область теории оптимизации в прикладной математике, связанная с исследованием операций, теорией алгоритмов и теорией вычислительной сложности. Комбинаторная оптимизация заключается в поиске оптимального объекта в конечном множестве объектов, чем очень похожа на дискретное программирование. Некоторые источники под дискретным программированием понимают целочисленное программирование, противопоставляя ему комбинаторную оптимизацию, имеющую дело с графами, матроидами и похожими структурами. Однако оба термина очень близко связаны и в литературе часто переплетаются. Комбинаторная оптимизация часто сводится к определению эффективного распределения ресурсов, используемых для поиска оптимального решения.
Вычисли́тельная сло́жность — понятие в информатике и теории алгоритмов, обозначающее функцию зависимости объёма работы, которая выполняется некоторым алгоритмом, от размера входных данных. Раздел, изучающий вычислительную сложность, называется теорией сложности вычислений. Объём работы обычно измеряется абстрактными понятиями времени и пространства, называемыми вычислительными ресурсами. Время определяется количеством элементарных шагов, необходимых для решения задачи, тогда как пространство определяется объёмом памяти или места на носителе данных. Таким образом, в этой области предпринимается попытка ответить на центральный вопрос разработки алгоритмов: «как изменится время исполнения и объём занятой памяти в зависимости от размера входа?». Здесь под размером входа понимается длина описания данных задачи в битах, а под размером выхода — длина описания решения задачи.
Алгори́тм имита́ции о́тжига — общий алгоритмический метод решения задачи глобальной оптимизации, особенно дискретной и комбинаторной оптимизации. Один из примеров методов Монте-Карло.
Полный перебор — метод решения математических задач. Относится к классу методов поиска решения исчерпыванием всевозможных вариантов. Сложность полного перебора зависит от количества всех возможных решений задачи. Если пространство решений очень велико, то полный перебор может не дать результатов в течение нескольких лет или даже столетий.
Целевая функция — вещественная или целочисленная функция нескольких переменных, подлежащая оптимизации в целях решения некоторой оптимизационной задачи. Термин используется в математическом программировании, исследовании операций, линейном программировании, теории статистических решений и других областях математики в первую очередь прикладного характера, хотя целью оптимизации может быть и решение собственно математической задачи. Помимо целевой функции в задаче оптимизации для переменных могут быть заданы ограничения в виде системы равенств или неравенств. В общем случае аргументы целевой функции могут задаваться на произвольных множествах.

Гамильтонов граф — граф, содержащий гамильтонов цикл. При этом гамильтоновым циклом является такой цикл, который проходит через каждую вершину данного графа ровно по одному разу; то есть простой цикл, в который входят все вершины графа.
Эвристический алгоритм (эвристика) — алгоритм решения задачи, включающий практический метод, не являющийся гарантированно точным или оптимальным, но достаточный для решения поставленной задачи. Позволяет ускорить решение задачи в тех случаях, когда точное решение не может быть найдено.

Зада́ча о восьми́ фе́рзя́х — широко известная комбинаторная задача по расстановке фигур на шахматной доске. Исходная формулировка: «Расставить на стандартной 64-клеточной шахматной доске 8 ферзей так, чтобы ни один из них не находился под боем другого». Подразумевается, что ферзь бьёт все клетки, расположенные по вертикалям, горизонталям и обеим диагоналям.
Обобщённая задача коммивояжёра — задача комбинаторной оптимизации, являющаяся обобщением хорошо известной задачи коммивояжёра. Исходными данными для задачи является множество вершин, разбиение этого множества на так называемые кластеры, а также матрица стоимостей перехода из одной вершины в другую. Задача заключается в нахождении кратчайшего замкнутого пути, который бы посетил по одной вершине в каждом кластере.
Тео́рия алгори́тмов — раздел математики, изучающий общие свойства и закономерности алгоритмов и разнообразные формальные модели их представления. К задачам теории алгоритмов относятся формальное доказательство алгоритмической неразрешимости задач, асимптотический анализ сложности алгоритмов, классификация алгоритмов в соответствии с классами сложности, разработка критериев сравнительной оценки качества алгоритмов и т. п. Вместе с математической логикой теория алгоритмов образует теоретическую основу вычислительных наук, теории передачи информации, информатики, телекоммуникационных систем и других областей науки и техники.

Gerasim@Home — российский проект добровольных распределенных вычислений на платформе BOINC. Проект стартовал в тестовом режиме в феврале 2008 года. Отличительной особенностью серверной части проекта, разработанной С. Ю. Валяевым, является использование операционной системы Windows Server 2008 и связки Microsoft SQL Server с ASP.NET, в то время как стандартный набор приложений от разработчиков BOINC требует использования операционной системы Linux или Unix. По состоянию на 23 июля 2015 года в проекте приняли участие 1999 пользователей из 62 стран, обеспечивая производительность 1—5 терафлопс. Участвовать в проекте может любой желающий, обладающий компьютером с выходом в Интернет, установив на него программу BOINC Manager.
Аппроксимационный алгоритм — в исследовании операций алгоритм, использующийся для поиска приближённого решения оптимизационной задачи.
Метод Эйлера — Паркера — метод построения ортогонального квадрата для заданного латинского квадрата порядка
. Предложен Паркером в 1959 году.