Специа́льная тео́рия относи́тельности — теория, описывающая движение, законы механики и пространственно-временные отношения при произвольных скоростях движения, меньших скорости света в вакууме, в том числе близких к скорости света. Фактически СТО описывает геометрию четырёхмерного пространства-времени и основана на плоском пространстве Минковского. Обобщение СТО для сильных гравитационных полей называется общей теорией относительности.
Вариацио́нное исчисле́ние — раздел анализа, в котором изучаются вариации функционалов. Наиболее типичная задача — найти функцию, на которой заданный функционал достигает экстремального значения.
Сингони́я — классификация кристаллографических групп симметрии, кристаллов и кристаллических решёток в зависимости от системы координат ; группы симметрии с единой координатной системой объединяются в одну сингонию. Кристаллы, принадлежащие к одной и той же сингонии, имеют подобные углы и рёбра элементарных ячеек.
Аналитическое продолжение в комплексном анализе — аналитическая функция, совпадающая с заданной функцией в её исходной области C и определённая при этом в области D, содержащей C — продолжение функции , являющееся аналитическим. Аналитическое продолжение всегда единственно.
Модулярная функция — мероморфная функция, определённая на верхней комплексной полуплоскости, являющаяся инвариантной относительно превращений модулярной группы или некоторой её подгруппы и удовлетворяющая условиям голоморфности в параболических точках. Модулярные функции и обобщающие их модулярные формы широко используются в теории чисел, а также в алгебраической топологии и теории струн.
Пове́рхностный эффе́кт, скин-эффект — эффект уменьшения амплитуды электромагнитных волн по мере их проникновения вглубь проводящей среды. В результате этого эффекта, например, переменный ток высокой частоты при протекании по проводнику распределяется не равномерно по сечению, а преимущественно в поверхностном слое.
Антецедент — на языке старых философов, особенно у логиков Кантовской школы, в их учении о суждениях, заключениях и доказательствах антецедент означает отчасти логическое подлежащее в его отношении к сказуемому, отчасти — причину в отношении к следствию.
Просто типизированное лямбда-исчисление — система типизированного лямбда-исчисления, в которой лямбда-абстракции приписывается специальный «стрелочный» тип. Эта система была предложена Алонзо Чёрчем в 1940 году. Для близкого к лямбда-исчислению формализма комбинаторной логики похожая система рассматривалась Хаскеллом Карри в 1934 году.
Сечение в теории доказательств — правило вывода, позволяющее удалить («высечь») промежуточное высказывание :
- .
Устранимость сечений — свойство логических исчислений, согласно которому всякую секвенцию, выводимую в данном исчислении, можно вывести без применения правила сечений. Играет фундаментальную роль в теории доказательств и важную методологическую роль в математической логике в целом в связи с тем, что предоставляет конструктивный метод доказательства непротиворечивости, в частности, для классической и интуиционистской логик первого порядка.
Теорема о дедукции — один из фундаментальных результатов в теории доказательств, формализует способ рассуждения, при котором для установления импликации используется в качестве необходимого условия вывода. Используется для установления существования выводов и доказательств, не используя их построения. Впервые была явно сформулирована и доказана в 1930 году Эрбраном, а без доказательств использовалась Эрбраном в 1928 году. Независимо этот принцип был сформулирован Тарским в 1930 году. По сообщению Тарского, он знал и применял этот принцип еще в 1921 году.
Соответствие Галуа — теоретико-порядковое соотношение между двумя математическими структурами, более слабое, чем изоморфизм, обобщающее связь из теории Галуа между подполями расширения и упорядоченной по включению системой подгрупп соответствующей ему группы Галуа. Понятие может быть распространено на любые структуры, наделённые отношением предпорядка.
Субри́маново многообра́зие — математическое понятие, обобщающее риманово многообразие. Суть обобщения состоит в том, что скалярное произведение задается не на касательных пространствах целиком, а только на некоторых их подпространствах.
Исчисление секвенций — вариант логических исчислений, использующий для доказательства утверждений не произвольные цепочки тавтологий, а последовательности условных суждений — секвенций. Наиболее известные исчисления секвенций — и для классического и интуиционистского исчислений предикатов — построены Генценом в 1934 году, позднее сформулированы секвенциальные варианты для широкого класса прикладных исчислений, теорий типов, неклассических логик.
Исчисление Ламбека — формальная логическая система, предложенная в 1958 году Иоахимом Ламбеком, которая предназначена для описания синтаксиса естественных языков. С математической точки зрения исчисление Ламбека является фрагментом линейной логики.
Линейная логика — подструктурная логика, предложенная Жан-Ивом Жираром как уточнение классической и интуиционистской логики, объединяющая двойственность первой со многими конструктивными свойствами последней, введена и используется для логических рассуждений, учитывающих расход некоторого ресурса. Хотя логика также изучалась сама по себе, идеи линейной логики находят применения во множестве приложений, вычисления в которых требуют учёта ресурсов, в том числе для верификации сетевых протоколов, языки программирования, теория игр и квантовая физика, лингвистика.
Субструктурная логика — логика, в которой отсутствует одно из обычных cтруктурных правил, таких как ослабление, контракция, обмен или ассоциативность. Двумя наиболее значимыми субструктурными логиками являются релевантная и линейная.