Топологи́ческое простра́нство — множество, для элементов которого определено, какие из них близки друг к другу. Является центральным понятием общей топологии.

Ве́кторное простра́нство — математическая структура, представляющая собой набор элементов, называемых векторами, для которых определены операции сложения друг с другом и умножения на число — скаляр. Эти операции подчинены восьми аксиомам. Скаляры могут быть элементами вещественного, комплексного или любого другого поля чисел. Частным случаем подобного пространства является обычное трёхмерное евклидово пространство, векторы которого используются, к примеру, для представления физических сил. При этом вектор как элемент векторного пространства не обязательно должен быть задан в виде направленного отрезка. Обобщение понятия «вектор» до элемента векторного пространства любой природы не только не вызывает смешения терминов, но и позволяет уяснить или даже предвидеть ряд результатов, справедливых для пространств произвольной природы.
Мо́щность, или кардина́льное число́, мно́жества — характеристика множеств, обобщающая понятие количества (числа) элементов конечного множества.
Бесконе́чное мно́жество — множество, не являющееся конечным. Можно дать ещё несколько эквивалентных определений бесконечного множества:
- Множество, в котором для любого натурального числа
найдётся конечное подмножество из
элементов. - Множество, в котором найдётся счётное подмножество.
- Множество, в котором найдётся подмножество, равномощное некоторому (ненулевому) предельному ординалу.
- Множество, для которого существует биекция с некоторым его собственным подмножеством.
Конти́нуум-гипо́теза — выдвинутое в 1877 году Георгом Кантором предположение о том, что любое бесконечное подмножество континуума является либо счётным, либо континуальным. Другими словами, гипотеза предполагает, что мощность континуума — наименьшая, превосходящая мощность счётного множества, и «промежуточных» мощностей между счетным множеством и континуумом нет. В частности, это предположение означает, что для любого бесконечного множества действительных чисел всегда можно установить взаимно-однозначное соответствие либо между элементами этого множества и множеством целых чисел, либо между элементами этого множества и множеством всех действительных чисел.
Теорема Гёделя о неполноте и вторая теорема Гёделя — две теоремы математической логики о принципиальных ограничениях формальной арифметики и, как следствие, всякой формальной системы, в которой можно определить основные арифметические понятия: натуральные числа, 0, 1, сложение и умножение.
Подпростра́нство — понятие, используемое в различных разделах математики.

Со́бственный ве́ктор — понятие в линейной алгебре, определяемое для произвольного линейного оператора как ненулевой вектор, применение к которому оператора даёт коллинеарный вектор — тот же вектор, умноженный на некоторое скалярное значение. Скаляр, на который умножается собственный вектор под действием оператора, называется собственным числом линейного оператора, соответствующим данному собственному вектору. Одним из представлений линейного оператора является квадратная матрица, поэтому собственные векторы и собственные значения часто определяются в контексте использования таких матриц.

В теории множеств порядковым числом, или ординалом называется порядковый тип вполне упорядоченного множества. Как правило, порядковые числа отождествляются с наследственно транзитивными множествами. Ординалы представляют собой одно из расширений натуральных чисел, отличающееся как от целых, так и от кардинальных чисел. Как и другие разновидности чисел, их можно складывать, перемножать и возводить в степень. Бесконечные порядковые числа называют трансфинитными. Ординалы играют ключевую роль в доказательстве многих теорем теории множеств — в частности, благодаря связанному с ними принципу трансфинитной индукции.
Теорема Дирихле о единицах — теорема алгебраической теории чисел, описывающая ранг подгруппы обратимых элементов кольца алгебраических целых
числового поля
.
Система аксиом фон Неймана — Бернайса — Гёделя в метаматематике — одна из основных аксиоматических теорий множеств. Эта система является расширением канонической теории Цермело — Френкеля с аксиомой выбора (ZFC). Предложения, сформулированные на языке теории ZFC, доказуемы в ZFC тогда и только тогда, когда они доказуемы в NBG.
Система F — система типизированного лямбда-исчисления, отличающаяся от просто типизированной системы наличием механизма универсальной квантификации над типами. Эту систему разработал в 1972 году Жан-Ив Жирар в контексте теории доказательств в логике. Независимо от него подобную систему предложил в 1974 году Джон Рейнольдс. Система F позволяет формализовать концепцию параметрического полиморфизма в языках программирования и служит теоретической основой для таких языков программирования как Haskell и ML.
Универсум фон Неймана — класс, образованный наследственными фундированными множествами; такая совокупность, формализуемая теорией множеств Цермело — Френкеля (ZFC), часто используется в качестве интерпретации или обоснования ZFC-аксиом. Стандартное обозначение —
.
В данной статье приведен список различных квадратурных формул, для численного интегрирования.
В вычислительной теории чисел и вычислительной алгебре алгоритм «кенгуру» Полларда — это алгоритм решения задачи дискретного логарифмирования. Алгоритм был предложен в 1978 специалистом в области теории чисел Дж. М. Поллардом в той же статье, что и его более известный ρ-алгоритм для решения той же задачи. Хотя Поллард описывает применение этого алгоритма для задачи дискретного логарифмирования в мультипликативной группе по модулю простого p, он является, фактически, общим алгоритмом дискретного логарифмирования — он будет работать на любой циклической конечной группе.

Иера́рхия а́лефов в теории множеств и в математике вообще представляет собой упорядоченную систему обобщённых («кардинальных») чисел, используемых для представления мощности бесконечных вполне упорядоченных множеств. Мощность конечного множества есть количество его элементов, поэтому иерархия кардинальных чисел включает обычные натуральные числа, упорядоченные традиционным способом. Далее в иерархии идут бесконечные вполне упорядоченные множества, мощность которых обозначается с помощью буквы алеф (ℵ) еврейского алфавита с индексами, причём индекс сам может быть бесконечным порядковым числом. Множествам большей мощности соответствует большее значение индекса.
Числа бет в математике — кардинальные числа, характеризующие мощность бесконечного множества. Последовательность бесконечных кардинальных чисел обычно записывается как
, где
названа по второй букве еврейского алфавита (бет).