Фундамента́льная гру́ппа — одна из простейших конструкций в алгебраической топологии. Сопоставляется группа всякому связному топологическому пространству. Для подмножеств плоскости эта группа измеряет количество «дырок». Наличие «дырки» определяется невозможностью непрерывно продеформировать (стянуть) некоторую замкнутую кривую в точку.
Кватернио́ны — система гиперкомплексных чисел, образующая векторное пространство размерностью четыре над полем вещественных чисел. Обычно обозначаются символом . Предложены Уильямом Гамильтоном в 1843 году.
Коэффициент зацепления — целочисленная характеристика пары пространственных замкнутых кривых без пересечений и самопересечений, описывающая суммарное количество раз, которое одна кривая в определённом смысле зацепляется за другую.
Важное свойство проективной плоскости — «симметрия» ролей, которые играют точки и прямые в определениях и теоремах, и двойственность является формализацией этой концепции. Имеются два подхода к концепции двойственности: один, использующий язык «принципа двойственности», позволяет объявить ряд теорем двойственными друг к другу, при этом двойственная к верной теореме тоже верна; и другой, функциональный подход, основанный на специальном отображении двойственности. Связь между подходами состоит в том, что двойственная теорема получается применением отображения двойственности к каждому объекту исходной. Возможен и координатный подход.
Пучок — структура, используемая для установления отношений между локальными и глобальными свойствами или характеристиками некоторого математического объекта. Пучки играют значительную роль в топологии, дифференциальной геометрии и алгебраической геометрии, но также применяются в теории чисел, анализе и теории категорий.
Расслоённое произведение — теоретико-категорное понятие, определяемое как предел диаграммы, состоящей из двух морфизмов: . Расслоённое произведение часто обозначают как .
Алгебра Хопфа — ассоциативная алгебра над полем, имеющая единицу и являющаяся также коассоциативной коалгеброй с коединицей c антигомоморфизмом специального вида. Названа в честь Хайнца Хопфа.
Схе́ма — математическая абстракция, позволяющая связать алгебраическую геометрию, коммутативную алгебру и дифференциальную геометрию и переносить идеи из одной области в другую. В первую очередь понятие схемы позволяет перенести геометрическую интуицию и геометрические конструкции, такие как тензорные поля, расслоения и дифференциалы, в теорию колец. Исторически теория схем возникла с целью обобщения и упрощения классической алгебраической геометрии итальянской школы XIX века, занимавшейся исследованием полиномиальных уравнений.
Зацепление Хопфа — простейшее нетривиальное зацепление с двумя и более компонентами, состоит из двух окружностей, зацеплённых однократно и названо по имени Хайнца Хопфа.
Форма Киллинга — симметричная билинейная форма на алгебре Ли определённого типа.
Гомотопические группы сфер — один из основных объектов изучения теории гомотопий, области алгебраической топологии. Гомотопические группы сфер классифицируют отображения между многомерными сферами с точностью до непрерывной деформации. Гомотопические группы сфер являются дискретными алгебраическими объектами, а именно конечнопорождёнными абелевыми группами. Несмотря на то, что классификация конечнопорождённых абелевых групп очень проста, точная структура гомотопических групп сфер до конца неизвестна.
Поверхность Хопфа — это компактная комплексная поверхность, получаемая как фактор комплексного векторного пространства C2 \ 0 по свободно действующей конечной группе. Если эта группа является группой целых чисел, поверхность Хопфа называется примарной, в противном случае — вторичной. Первый пример такой поверхности нашёл Хопф с дискретной группой, изоморфной группе целых чисел и генератором, действующим на C2 путём умножения на 2. Это был первый пример компактной комплексной поверхности без кэлеровой метрики.
Инъективная оболочка — конструкция в метрической геометрии, дающая наименьшее инъективное метрическое пространство, включающее данное метрическое пространство. Эта конструкция во многом аналогична конструкции выпуклой оболочки для множеств в евклидовом пространстве.
Мультипликатор Шура является второй гомологией групп группы G. Его ввёл Исай Шур в работе по проективным представлениям.
K-теория — математическая теория, изучающая кольца, порождённые векторными расслоениями над топологическими пространствами или схемами. В алгебраической топологии эта обобщённая теория когомологий называется топологической K-теорией. В алгебре и алгебраической геометрии соответствующий раздел называется алгебраической K-теорией. Также она играет важную роль в операторных алгебрах и её можно рассматривать как теорию определенных видов инвариантов больших матриц.
Конфигурационное пространство в топологии — множество наборов различных точек заданного топологического пространства.
Инвариант Хопфа — гомотопический инвариант отображений между сферами определённых размерностей. Предложен Хайнцем Хопфом в 1931 году.
Первая группа когомологий топологического пространства — абелева группа, состоящая из аддитивных целозначных функций на первой группе гомологий этого пространства. Она является простейшим вариантом групп когомологий — одного из центральных понятий теории гомологий и алгебраической топологии.