Логика первого порядка — формальное исчисление, допускающее высказывания относительно переменных, фиксированных функций и предикатов. Расширяет логику высказываний.
Предика́т — это утверждение, высказанное о субъекте. Субъектом высказывания называется то, о чём делается утверждение. В лингвистике субъекту соответствует подлежащее, а предикату — сказуемое.
Алгебра логики — раздел математической логики, в котором изучаются логические операции над высказываниями. Чаще всего предполагается, что высказывания могут быть только истинными или ложными, то есть используется так называемая бинарная или двоичная логика, в отличие от, например, троичной логики.
Парадо́кс в широком смысле — высказывание, мнение, рассуждение, которое расходится с общепринятым мнением и кажется нелогичным или противоречащим здравому смыслу.
Ло́гика (др.-греч. λογική — «наука о правильном мышлении»; «способность к рассуждению»; от λόγος «учение, наука») — философская дисциплина и нормативная наука о законах, формах и приёмах интеллектуальной деятельности.
Сужде́ние — мысль, в которой утверждается наличие или отсутствие каких-либо положений дел.
Закон исключённого третьего — закон классической логики, который формулируется следующим образом: два противоречащих суждения не могут быть оба ложными, одно из них будет истинно: а есть либо b, либо не b. Истинно либо утверждение некоторого факта, либо его отрицание. Третьего не дано.
Выска́зывание в математической логике — предложение, выражающее суждение. Если суждение, составляющее содержание (смысл) некоторого высказывания, истинно, то и о данном высказывании говорят, что оно истинно. Сходным образом ложным называют такое высказывание, которое является выражением ложного суждения. Истинность и ложность называются логическими, или истинностными, значениями высказываний.
Ква́нтор — общее название для логических операций, ограничивающих область истинности какого-либо предиката и создающих высказывание. Чаще всего упоминают:
- Квантор всеобщности.
- Квантор существования.
- Квантор единственности.
Христоф фон Зи́гварт — немецкий философ-логик, близкий к неокантианству, психологист; профессор философии в Тюбингене. Сын философа Христофа Вильгельма фон Зигварта.
Противоре́чие — отношение двух понятий и суждений, каждое из которых является отрицанием другого.
Мода́льная ло́гика — логика, в которой кроме стандартных логических связок, переменных и предикатов есть модальности.
Коа́н — короткое повествование, вопрос, диалог, обычно не имеющие логической подоплёки, зачастую содержащие алогизмы и парадоксы, доступные скорее интуитивному пониманию.
Пра́вило резолю́ций — это правило вывода, восходящее к методу доказательства теорем через поиск противоречий; используется в логике высказываний и логике первого порядка. Правило резолюций, применяемое последовательно для списка резольвент, позволяет ответить на вопрос, существует ли в исходном множестве логических выражений противоречие. Правило резолюций предложено в 1930 году в докторской диссертации Жака Эрбрана для доказательства теорем в формальных системах первого порядка. Правило разработано Джоном Аланом Робинсоном в 1965 году.
Необходимое условие и достаточное условие — виды условий, логически связанных с некоторым суждением. Различие этих условий используется в логике и математике для обозначения видов связи суждений.
Отрица́ние в логике — унарная операция над суждениями, результатом которой является суждение, «противоположное» исходному. Обозначается знаком ¬ перед или чертой — над суждением.
«Тогда́ и то́лько тогда́» — логическая связка эквиваленции между утверждениями, применяемая в логике, математике, философии. Чтобы быть эквиваленцией, связка должна быть идентична стандартному материальному условному высказыванию, соединённому со своей противоположностью, откуда и название связки. В результате истинность одного утверждения требует такой же истинности другого, то есть либо оба они истинны, либо оба ложны. Можно спорить о том, передаёт ли выражение русского языка «тогда и только тогда» определённую выше связку с её уже существующим смыслом. Конечно, ничто не может помешать нам читать эту связку именно как «тогда и только тогда», хотя это может иногда привести к путанице.
Триада в «Науке логики» Гегеля — это объединение каких-либо двух противоположных понятий и какого-либо третьего понятия, которое опосредует внутреннее единство двух противоположных понятий. Примером является триада «бытие — ничто — становление», в которой становление опосредует внутреннее единство бытия и ничто. В общем случае, триада имеет вид «понимание — диалектическое суждение — спекулятивное суждение».
Натуральный вывод — тип логических исчислений, использующий для доказательства утверждений правила вывода, близкие к обычным содержательным методам рассуждений.
Эквивале́нтными называют два суждения, образованные с помощью логического союза «двойная импликация» “↔”. Специфика союза “эквиваленция” состоит в том, что эквивалентное суждение признается истинным, когда оба входящие в ее состав исходные суждения имеют одинаковое значение истинности: либо они одновременно истинные, либо одновременно ложные. Примерами такого рода суждений могут быть следующие: “Студент получает повышенную стипендию тогда и только тогда, когда он сдает сессию на одни пятерки”, “Преступником можно называть человека тогда и только тогда, когда судом доказана его виновность”.