О́бщая тео́рия относи́тельности — общепринятая в настоящее время теория тяготения, описывающая тяготение как проявление геометрии пространства-времени. Предложена Альбертом Эйнштейном 25 ноября 1915 года.
Гравита́ция — универсальное фундаментальное взаимодействие между материальными телами, обладающими массой. В приближении малых, по сравнению со скоростью света, скоростей и слабого гравитационного взаимодействия описывается теорией тяготения Ньютона, в общем случае описывается общей теорией относительности Эйнштейна. В квантовом пределе гравитационное взаимодействие предположительно описывается квантовой теорией гравитации, которая ещё не разработана.
Уравне́ния Эйнште́йна — уравнения гравитационного поля, лежащие в основе общей теории относительности, связывающие между собой компоненты метрического тензора искривлённого пространства-времени с компонентами тензора энергии-импульса материи, заполняющей пространство-время. Термин используется и в единственном числе: «уравне́ние Эйнште́йна», так как в тензорной записи это одно уравнение, хотя в компонентах представляет собой систему нелинейных дифференциальных уравнений в частных производных.
Простра́нство Минко́вского ― четырёхмерное псевдоевклидово пространство сигнатуры , предложенное в качестве геометрической интерпретации пространства-времени специальной теории относительности.
Метри́ческий те́нзор, или ме́трика, — симметричное тензорное поле ранга (0,2) на гладком многообразии, посредством которого задаётся скалярное произведение векторов в касательном пространстве. Иначе говоря, метрический тензор задаёт билинейную форму на касательном пространстве к этой точке, обладающую свойствами скалярного произведения и гладко зависящую от точки.
Кривизна простра́нства-вре́мени — физический эффект, проявляющийся в девиации геодезических линий, то есть в расхождении или сближении траекторий свободно падающих тел, запущенных из близких точек пространства-времени. Величиной, определяющей кривизну пространства-времени, является тензор кривизны Римана, входящий в уравнение девиации геодезических линий.
Пове́рхность в геометрии и топологии — двумерное топологическое многообразие. Наиболее известными примерами поверхностей являются границы геометрических тел в обычном трёхмерном евклидовом пространстве. С другой стороны, существуют поверхности, которые нельзя вложить в трёхмерное евклидово пространство без привлечения сингулярности или самопересечения.
Ме́трика Шва́рцшильда — это единственное в силу теоремы Биркхофа сферически симметричное точное решение уравнений Эйнштейна без космологической константы в пустом пространстве. В частности, эта метрика достаточно точно описывает гравитационное поле уединённой невращающейся и незаряженной чёрной дыры и гравитационное поле снаружи от уединённого сферически симметричного массивного тела. Названа в честь Карла Шварцшильда, который первым её обнаружил в 1916 году.
Мировая линия объекта — это путь объекта в 4-мерном пространстве-времени. Это важное понятие в современной физике, и в особенности в теоретической физике.
Теория Калуцы — Клейна — одна из многомерных теорий гравитации, позволяющая объединить два фундаментальных физических взаимодействия: гравитацию и электромагнетизм. Теория была впервые опубликована в 1921 году немецким математиком Теодором Калуцей, который расширил пространство Минковского до 5-мерного пространства и получил из уравнений своей теории уравнения общей теории относительности и классические уравнения Максвелла. Обоснование ненаблюдаемости пятого измерения было предложено шведским физиком Оскаром Клейном в 1926 году.
Антидеси́ттеровское простра́нство — псевдориманово многообразие постоянной отрицательной кривизны. Его можно считать псевдоримановым аналогом -мерного гиперболического пространства. Названо как противопоставление пространству де Ситтера, обозначается обычно .
Тензор Риччи, названный в честь итальянского математика Грегорио Риччи-Курбастро, задаёт один из способов измерения кривизны многообразия, то есть степени отличия геометрии многообразия от геометрии плоского евклидова пространства. Тензор Риччи, точно так же как метрический тензор, является симметричной билинейной формой на касательном пространстве риманова многообразия. Грубо говоря, тензор Риччи измеряет деформацию объёма, то есть степень отличия n-мерных областей n-мерного многообразия от аналогичных областей евклидова пространства (см. геометрический смысл тензора Риччи). Обычно обозначается или .
В этой статье рассматривается математический базис общей теории относительности.
Геодези́ческая — кривая определённого типа, обобщение понятия «прямая» для искривлённых пространств.
Гравитацио́нная сингуля́рность — точка в пространстве-времени, через которую невозможно гладко продолжить входящую в неё геодезическую линию. В таких областях становится неприменимым базовое приближение большинства физических теорий, в которых пространство-время рассматривается как гладкое многообразие без края. Часто в гравитационной сингулярности величины, описывающие гравитационное поле, становятся бесконечными или неопределёнными. К таким величинам относятся, например, скалярная кривизна или плотность энергии в сопутствующей системе отсчёта.
Релятиви́стская тео́рия гравита́ции (РТГ) — биметрическая теория гравитации, развиваемая в рамках специальной теории относительности и основанная на представлении гравитационного поля как симметричного тензорного физического поля валентности 2 в пространстве Минковского. Оно формирует метрику эффективного риманова пространства, которое только и чувствуют прочие поля и частицы. В последних версиях утверждается, что теория содержит массивные гравитоны. Разрабатывалась академиком РАН А. А. Логуновым с группой сотрудников.
Решить уравнение Эйнштейна — значит, найти вид метрического тензора пространства-времени. Задача ставится заданием граничных условий, координатных условий и написанием тензора энергии-импульса , который может описывать как точечный массивный объект, распределённую материю или энергию, так и всю Вселенную целиком. В зависимости от вида тензора энергии-импульса решения уравнения Эйнштейна можно разделить на вакуумные, полевые, распределённые, космологические и волновые. Существуют также чисто математические классификации решений, основанные на топологических или алгебраических свойствах описываемого ими пространства-времени, или, например, на алгебраической симметрии тензора Вейля данного пространства.
О́бщая тео́рия относи́тельности в многоме́рном простра́нстве — обобщение общей теории относительности на пространство-время с размерностью больше или меньше 4. Эта теория даёт основу для так называемой геометризации взаимодействий — одного из двух путей к построению единой теории поля. Она состоит из различных физических теорий, которые пытаются обобщить теорию относительности Эйнштейна на более высоких размерностях. Такая попытка обобщения находится под большим влиянием теории струн и М-теории. От других многомерных моделей общая теория относительности в многомерном пространстве отличается фиксированным видом используемой лагранжевой плотности — в данной теории это может быть только скалярная кривизна.
Теоремы Пенроуза — Хокинга о сингулярности — это теоремы в общей теории относительности, которые пытаются ответить на вопрос, когда гравитация порождает сингулярности.
Классические теории единого поля — попытки создать единую теорию поля, основанную на классической физике. В межвоенные годы ряд физиков и математиков пытались объединить теории гравитации и электромагнетизма. Эта работа подтолкнула развитие дифференциальной геометрии.