Коэффициенты формул численного дифференцирования

Перейти к навигацииПерейти к поиску

В математике для приближённого вычисления производных заданной таблично функции можно искать выражение значений производных через известные значения функции с помощью подходящего набора коэффициентов. Для этого можно использовать различные интерполяционные формулы или метод неопределённых коэффициентов.

Равноотстоящие узлы

Пусть — точка, в которой необходимо вычислить производные достаточно гладкой функции , — сетка равноотстоящих узлов с шагом и известны значения функции в этих узлах. В этом случае можно выразить формулы численного дифференцирования непосредственно через значения функции с помощью интерполяционной формулы Лагранжа. Такие формулы называются также безразностными, так как не требуют вычисления конечных или разделённых разностей[1].

В зависимости от расположения точки в сетке узлов (слева, справа или посередине) различают соответственно коэффициенты, вычисленные «вперёд», «назад» и симметричные коэффициенты.

Симметричные коэффициенты

Для получения симметричных коэффициентов число узлов в сетке должно быть нечётным. Тогда порядок погрешности приближения будет чётным числом.

Порядок производной Порядок погрешности −5−4−3−2−1012345
1 2 −1/201/2
4 1/12−2/302/3−1/12
6 −1/603/20−3/403/4−3/201/60
8 1/280−4/1051/5−4/504/5−1/54/105−1/280
2 2 1−21
4 −1/124/3−5/24/3−1/12
6 1/90−3/203/2−49/183/2−3/201/90
8 −1/5608/315−1/58/5−205/728/5−1/58/315−1/560
3 2 −1/210−11/2
4 1/8−113/80−13/81−1/8
6 −7/2403/10−169/12061/300−61/30169/120−3/107/240
4 2 1−46−41
4 −1/62−13/228/3−13/22−1/6
6 7/240−2/5169/60−122/1591/8−122/15169/60−2/57/240
5 2 −1/22−5/205/2−21/2
4 1/6−3/213/3−29/6029/6−13/33/2−1/6
6 −13/28819/36−87/3213/2−323/480323/48−13/287/32−19/3613/288
6 2 1−615−2015−61
4 −1/43−1329−75/229−133−1/4
6 13/240−19/2487/16−39/2323/8−1023/20323/8−39/287/16−19/2413/240

Например, третья производная с погрешностью второго порядка вычисляется как

Коэффициенты вперёд

Порядок производной Порядок погрешности 0 1 2 3 4 5 6 7 8
1 1−11       
2−3/22−1/2      
3−11/63−3/21/3     
4−25/124−34/3−1/4    
5−137/605−510/3−5/41/5   
6−49/206−15/220/3−15/46/5−1/6  
2 11−21      
22−54−1     
335/12−26/319/2−14/311/12    
415/4−77/6107/6−1361/12−5/6   
5203/45−87/5117/4−254/933/2−27/5137/180  
6469/90−223/10879/20−949/1841−201/101019/180−7/10 
3 1−13−31     
2−5/29−127−3/2    
3−17/471/4−59/249/2−41/47/4   
4−49/829−461/862−307/813−15/8  
5−967/120638/15−3929/40389/3−2545/24268/5−1849/12029/15 
6−801/80349/6−18353/1202391/10−1457/64891/30−561/8527/30−469/240
4 11−46−41    
23−1426−2411−2   
335/6−31137/2−242/3107/2−1917/6  
428/3−111/2142−1219/6176−185/282/3−7/2 
51069/80−1316/1515289/60−2144/510993/24−4772/152803/20−536/15967/240

Например, первая производная с погрешностью третьего порядка и вторая производная с погрешностью второго порядка вычисляются как

Нетрудно видеть, что коэффициенты для погрешности первого порядка представляют собой биномиальные коэффициенты с меняющимися знаками, что соответствует общей формуле для восходящих конечных разностей.

Коэффициенты назад

Для получения коэффициентов назад необходимо обратить знаки у коэффициентов вперёд для производных нечётных порядков и зеркально отразить таблицу коэффициентов справа налево:

Порядок производной Порядок погрешности −5 −4 −3 −2 −1 0
1 1    −11
2   1/2−23/2
3  −1/33/2−311/6
2 1   1−21
2  −14−52
3 1  −13−31
2 3/2−712−95/2
4 1 1−46−41
2−211−2426−143

Например, первая производная с погрешностью третьего порядка и вторая производная с погрешностью второго порядка вычисляются как

Произвольная сетка узлов

Для получения коэффициентов для произвольно расположенных узлов удобно использовать метод неопределённых коэффициентов[2]. Для этого значение искомой производной порядка в точке записывается в виде

где

— неизвестные коэффициенты,
— остаточный член интерполяции.

Коэффициенты подбираются из условия , которое должно выполняться для функций , , ,..., . Получается следующая система линейных уравнений:

В этом случае погрешность вычислений будет иметь порядок .

Матрица системы является матрицей Вандермонда, которая также возникает при решении общей задачи интерполяции многочленами.

Примечания

Литература

  • Березин, И. С., Жидков Н. П. Методы вычислений. — 2-е изд. — М.: Физматлит, 1962. — Т. I.
  • Fornberg, B.. Generation of Finite Difference Formulas on Arbitrarily Spaced Grids (англ.) // Mathematics of Computation. — 1988. — Vol. 51. — P. 699—706. — doi:10.1090/S0025-5718-1988-0935077-0.

Ссылки

См. также