Категория Бэра — один из способов различать «большие» и «маленькие» множества. Подмножество топологического пространства может быть первой или второй категории Бэра.
Стереоме́трия — раздел евклидовой геометрии, в котором изучаются свойства фигур в пространстве. Основными (простейшими) фигурами в пространстве являются точки, прямые и плоскости. В стереометрии появляется новый вид взаимного расположения прямых: скрещивающиеся прямые. Это одно из немногих существенных отличий стереометрии от планиметрии, так как во многих случаях задачи по стереометрии решаются путём рассмотрения различных плоскостей, в которых выполняются планиметрические законы.
Аффи́нное простра́нство — математический объект (пространство), обобщающий некоторые свойства евклидовой геометрии. В отличие от векторного пространства, аффинное пространство оперирует с объектами не одного, а двух типов: «векторами» и «точками».
Выпуклой оболочкой множества
называется наименьшее выпуклое множество, содержащее
. «Наименьшее множество» здесь означает наименьший элемент по отношению к вложению множеств, то есть такое выпуклое множество, содержащее данную фигуру, что оно содержится в любом другом выпуклом множестве, содержащем данную фигуру.
Проекция — это:
- изображение трёхмерной фигуры на так называемой картинной (проекционной) плоскости способом, представляющим собой геометрическую идеализацию оптических механизмов зрения, фотографии, камеры-обскуры. Термин проекция в этом контексте также означает метод построения такого изображения и технические приёмы, в основе которых лежит этот метод. Широко применяется в инженерной графике, архитектуре, живописи и картографии. Изучением методов построения проекций как инженерная дисциплина занимается начертательная геометрия;
- обобщение проекции в первом её смысле для отображения точек, фигур, векторов пространства любой размерности на его подпространство любой размерности: например, кроме проекции точек трёхмерного пространства на плоскость, может быть проекция точек трёхмерного пространства на прямую, точек плоскости на прямую, точек 7-мерного пространства на его 4-мерное подпространство и т. п., а также проекция вектора на любое подпространство исходного пространства, в особенности на прямую или на направление вектора. Проекция в этом смысле находит широкое применение в отношении векторов, при использовании декартовых координат и т. п.

Выпуклое множество в аффинном или векторном пространстве — множество, в котором все точки отрезка, образуемого любыми двумя точками данного множества, также принадлежат данному множеству.
Кривы́е Безье́ или Кривы́е Бернште́йна — Безье́ — типы кривых, предложенные в 60-х годах XX века независимо друг от друга Пьером Безье из автомобилестроительной компании «Рено» и Полем де Кастельжо из компании «Ситроен», где применялись для проектирования кузовов автомобилей.

Алгебраическая кривая, или плоская алгебраическая кривая, — это геометрическое место (множество) точек на плоскости (O;x,y), которое определяется как множество нулей многочлена от двух переменных. Степенью (или порядком) n этой кривой называется степень этого многочлена. Алгебраические кривые степеней n = 1, 2, 3, …, 8 кратко называются прямыми, кониками, кубиками, квартиками, пентиками, секстиками, септиками, октиками соответственно. Например, единичная окружность — это алгебраическая кривая степени 2 (коника), так как она задаётся уравнением x2 + y2 − 1 = 0.

Диаграмма Вороного конечного множества точек S на плоскости представляет такое разбиение плоскости, при котором каждая область этого разбиения образует множество точек, более близких к одному из элементов множества S, чем к любому другому элементу множества.
Алгоритм быстрой оболочки — алгоритм построения выпуклой оболочки на плоскости. Использует идею быстрой сортировки Хоара
Алгоритм Грэхема — алгоритм построения выпуклой оболочки в двумерном пространстве. В этом алгоритме задача о выпуклой оболочке решается с помощью стека, сформированного из точек-кандидатов. Все точки входного множества заносятся в стек, а потом точки, не являющиеся вершинами выпуклой оболочки, со временем удаляются из него. По завершении работы алгоритма в стеке остаются только вершины оболочки в порядке их обхода против часовой стрелки.

Теорема Крейна — Мильмана — важный факт из выпуклого анализа в линейных топологических пространствах. Доказана Марком Крейном и Давидом Мильманом в 1940 году.

Выпуклый многогранник — многогранник, являющийся выпуклым множеством. Это основное понятие в задачах линейного программирования.

Лемма Шепли — Фолкмана связывает две операции выпуклой геометрии — сложение по Минковскому и выпуклую оболочку. Лемма имеет приложения в ряде дисциплин, в том числе в математической экономике, оптимизации и теории вероятностей. Лемма и связанные с ней результаты позволяют дать утвердительный ответ на вопрос «Близка ли к состоянию выпуклости сумма нескольких множеств?».
В данном списке приводятся математические утверждения и объекты, названные именем венгерского математика Пала Эрдёша.

Задача со счастливым концом — утверждение о том, что любое множество из пяти точек на плоскости в общем положении имеет подмножество из четырёх точек, которые являются вершинами выпуклого четырёхугольника.

Комбинаторная или дискретная геометрия — раздел геометрии, в котором изучаются комбинаторные свойства геометрических объектов и связанные с ними конструкции. В комбинаторной геометрии рассматривают конечные и бесконечные дискретные множества или структуры базовых однотипных геометрических объектов и ставят вопросы, связанные со свойствами различных геометрических конструкций из этих объектов или на этих структурах. Проблемы комбинаторной геометрии простираются от конкретных «предметно»-комбинаторных вопросов — замощения, упаковка кругов на плоскости, формула Пика — до вопросов общих и глубоких, таких как гипотеза Борсука, проблема Нелсона — Эрдёша — Хадвигера.
Алгоритм Дикстры — метод нахождения точки из пересечения выпуклых множеств. Является вариантом метода поочерёдного проецирования, известного также как метод проецирования в выпуклые множества. В простейшем варианте метод находит точку из пересечения двух выпуклых множеств путём итеративного проецирования в каждое из них. Метод отличается от метода поочерёдного проецирования наличием промежуточных шагов. Параллельную версия алгоритма разработали Гафке и Матар.