График нерегулярной кулоновской функции G, построенный от 0 до 20 при наличии взаимодействий отталкивания и притяжения (построено в Mathematica 13.1)График регулярной кулоновской функции на комплексной плоскости
В математикекулоновская волновая функция — это решение уравнения для кулоновских функций, названного в честь Шарля Огюстена де Кулона. Кулоновские функции используются для описания поведения заряженных частиц в кулоновском потенциале и могут быть записаны в терминах конфлюэнтных гипергеометрических функций[англ.] или функций Уиттекера[англ.] комплексного аргумента.
Уравнение для кулоновских функций для заряженной частицы массы представляет собой уравнение Шрёдингера в кулоновском потенциале[1]
где — произведение зарядов частицы и источника поля (в единицах элементарного заряда, для атома водорода), — постоянная тонкой структуры и — энергия частицы. Решение данного уравнения (т. е. сами кулоновские функции) можно найти, решая уравнение в параболических координатах
В зависимости от граничных условий решение принимает различный вид. В частности, решениями уравнения являются функции[2][3]
где — конфлюэнтная гипергеометрическая функция[англ.], , а — гамма-функция. Здесь использованы граничные условия
соответствующие ориентированным вдоль вектора плосковолновым асимптотическим состояниям, которые отвечают соответственно моментам до и после приближения частицы к источнику поля в начале координат. Функции связаны между собой соотношением
Разложение по парциальным волнам
Волновую функцию можно разложить по парциальным волнам, при этом мы получим не зависящие от угла радиальные функции . Здесь и далее .
Каждый конкретный член разложения можно получить, найдя скалярное произведение волновой функции со сферической функцией, т. е.
Уравнение для парциальной волны можно получить, записав гамильтониан в уравнении для кулоновских функций в сферических координатах и проецируя уравнение на сферическую функцию
Решения данного уравнения называются кулоновскими (парциальными) волновыми функциями или сферическими кулоновскими функциями. Если положить , то уравнение для кулоновских функций превратится в уравнение Уиттекера[англ.], поэтому кулоновские функции могут быть записаны в терминах функций Уиттекера с мнимыми аргументами и . Последнюю функцию можно выразить через конфлюэнтные гипергеометрические функции[англ.] и . Для определим функции[4]
где
называется кулоновской фазой рассеяния. Также можно определить действительные функции
График регулярной кулоновской функции F, построенный от 0 до 20 при наличии взаимодействий отталкивания и притяжения (построено в Mathematica 13.1)
В частности,
Асимптотическое поведение кулоновских функций , и при больших
где
Решения соответствуют расходящейся и сходящейся сферическим волнам. Решения and являются действительными и называются регулярной и нерегулярной кулоновскими функциями. Справедливо следующее разложение волновой функции по парциальным волнам[5]
Свойства кулоновских функций
Радиальные функции с заданным угловым моментом ортогональны. При выборе нормировки на волновое число радиальные функции континуума удовлетворяют[6][7]
Другими часто встречающимися нормировками является нормировка на приведённое волновое число (-scale)
и также нормировка на энергию
Радиальные функции, определённые в предыдущем разделе, нормированы следующим образом
как следствие нормировки
Кулоновские функции континуума (или рассеяния) также ортогональны по отношению ко всем связанным кулоновским состояниям[8]
так как являются собственными состояниями одного и того же эрмитова оператора (гамильтониана), имеющими разные собственные значения.
Jaeger, J. C.; Hulme, H. R. (1935), "The Internal Conversion of γ -Rays with the Production of Electrons and Positrons", Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 148 (865): 708—728, Bibcode:1935RSPSA.148..708J, doi:10.1098/rspa.1935.0043, ISSN0080-4630, JSTOR96298
Slater, Lucy Joan (1960), Confluent hypergeometric functions, Cambridge University Press, MR0107026.
↑Landau, L. D.; Lifshitz, E. M. (1977), Course of theoretical physics III: Quantum mechanics, Non-relativistic theory (3rd ed.), Pergamon Press, p. 569
↑Messiah, Albert (1961), Quantum mechanics, North Holland Publ. Co., p. 485
↑Gaspard, David (2018), "Connection formulas between Coulomb wave functions", J. Math. Phys., 59 (11): 112104, arXiv:1804.10976, doi:10.1063/1.5054368
↑Messiah, Albert (1961), Quantum mechanics, North Holland Publ. Co., p. 426
↑Formánek, Jiří (2004), Introduction to quantum theory I (чешск.) (2nd ed.), Prague: Academia, pp. 128—130
↑Landau, L. D.; Lifshitz, E. M. (1977), Course of theoretical physics III: Quantum mechanics, Non-relativistic theory (3rd ed.), Pergamon Press, p. 121
↑Landau, L. D.; Lifshitz, E. M. (1977), Course of theoretical physics III: Quantum mechanics, Non-relativistic theory (3rd ed.), Pergamon Press, pp. 668—669
Похожие исследовательские статьи
Уравне́ние Шрёдингера — линейное дифференциальное уравнение в частных производных, описывающее изменение в пространстве и во времени чистого состояния, задаваемого волновой функцией, в гамильтоновых квантовых системах.
Уравне́ния Ма́ксвелла — система уравнений в дифференциальной или интегральной форме, описывающих электромагнитное поле и его связь с электрическими зарядами и токами в вакууме и сплошных средах. Вместе с выражением для силы Лоренца, задающим меру воздействия электромагнитного поля на заряженные частицы, эти уравнения образуют полную систему уравнений классической электродинамики, называемую иногда уравнениями Максвелла — Лоренца. Уравнения, сформулированные Джеймсом Клерком Максвеллом на основе накопленных к середине XIX века экспериментальных результатов, сыграли ключевую роль в развитии представлений теоретической физики и оказали сильное, зачастую решающее влияние не только на все области физики, непосредственно связанные с электромагнетизмом, но и на многие возникшие впоследствии фундаментальные теории, предмет которых не сводился к электромагнетизму.
Эффект Шубникова — де Хааза назван в честь советского физика Л. В. Шубникова и нидерландского физика В. де Хааза, открывших его в 1930 году. Наблюдаемый эффект заключался в осцилляциях магнетосопротивления плёнок висмута при низких температурах. Позже эффект Шубникова — де Гааза наблюдали в многих других металлах и полупроводниках. Эффект Шубникова — де Гааза используется для определения тензора эффективной массы и формы поверхности Ферми в металлах и полупроводниках.
Моме́нт ине́рции — тензорная физическая величина, мера инертности во вращательном движении вокруг оси, подобно тому, как масса тела является мерой его инертности в поступательном движении. Характеризуется распределением масс в теле. Момент инерции равен сумме произведений элементарных масс на квадрат их расстояний до базового множества, которое, формально, может представлять собой не обязательно ось вращения, но и точку или плоскость. В последних случаях говорят о моменте инерции относительно точки или плоскости, а возникать такие величины могут в формальных вычислениях, например, при расчете тензора инерции.
Функция Вигнера была введена Вигнером в 1932 году для изучения квантовых поправок к классической статистической механике. Целью было заменить волновую функцию, которая появляется в уравнении Шрёдингера на функцию распределения вероятности в фазовом пространстве. Она была независимо выведена Вейлем в 1931 году как символ матрицы плотности теории представлений в математике. Функция Вигнера применяется в статистической механике, квантовой химии, квантовой оптике, классической оптике и анализе сигналов в различных областях, таких как электроника, сейсмология, акустика, биология. При анализе сигналов используются названия преобразование Вигнера — Вилла и распределение Вигнера — Вилла.
Фу́нкция Гри́на — функция, используемая для решения линейных неоднородных дифференциальных уравнений с граничными условиями . Названа в честь английского математика Джорджа Грина, который первым развил соответствующую теорию в 1830-е годы.
Уравне́ние Пуассо́на — эллиптическое дифференциальное уравнение в частных производных, которое описывает
электростатическое поле,
гравитационное поле,
стационарное поле температуры,
поле давления,
поле потенциала скорости в гидродинамике.
В квантовой механике ток вероятности описывает изменение функции плотности вероятности.
Волновое уравнение в физике — линейное гиперболическое дифференциальное уравнение в частных производных, задающее малые поперечные колебания тонкой мембраны или струны, а также другие колебательные процессы в сплошных средах и электромагнетизме (электродинамике). Находит применение и в других областях теоретической физики, например при описании гравитационных волн. Является одним из основных уравнений математической физики.
Интегра́л Пуассо́на — общее название математических формул, выражающих решение краевой задачи или начальной задачи для уравнений с частными производными некоторых типов.
Водородоподо́бный а́том или водородоподо́бный ио́н представляет собой любое атомное ядро, которое имеет один электрон и, следовательно, является изоэлектронным атому водорода. Эти ионы несут положительный заряд , где — зарядовое число ядра. Примерами водородоподобных ионов являются He+, Li2+, Be3+ и B4+. Поскольку водородоподобные ионы представляют собой двухчастичные системы, взаимодействие которых зависит только от расстояния между двумя частицами, их (нерелятивистское) уравнение Шредингера и (релятивистское) уравнение Дирака имеют решения в аналитической форме. Решения являются одноэлектронными функциями и называются водородоподобными атомными орбиталями.
Плотность заряда — это количество заряда, приходящееся на единицу длины, площади или объёма, таким образом определяются линейная, поверхностная и объемная плотности заряда, которые измеряются в системе СИ: в Кулонах на метр (Кл/м), в Кулонах на квадратный метр (Кл/м²) и в Кулонах на кубический метр (Кл/м³), соответственно. В отличие от плотности вещества, плотность заряда может иметь как положительные, так и отрицательные значения, это связано с тем, что существуют положительные и отрицательные заряды.
Рассеяние света сферической частицей — классическая задача электродинамики, решённая в 1908 году Густавом Ми для сферической частицы произвольного размера.
Физические свойства графена проистекают из электронных свойств атомов углерода и поэтому часто имеют нечто общее с остальными аллотропными модификациями углерода, которые были известны до него, такими как графит, алмаз, углеродные нанотрубки. Конечно, схожести больше с графитом, так как он состоит из графеновых слоёв, но без новых уникальных физических явлений и исследований других материалов и наработок физических методов анализа и теоретических подходов графен не привлёк бы специалистов из таких разных дисциплин как физика, химия, биология и физика элементарных частиц.
Атом гелия — это атом химического элемента гелия. Гелий состоит из двух электронов, связанных с ядром, содержащим два протона вместе с одним (3He) или двумя (4He) нейтронами, удерживаемыми сильным взаимодействием. В отличие от водорода, замкнутой формы решения уравнения Шрёдингера для атома гелия не найдено. Однако различные приближения, такие как метод Хартри — Фока, можно использовать для оценки энергии основного состояния и волновой функции атома.
Векторными сферическими гармониками являются векторные функции, преобразующиеся при вращениях системы координат так же, как скалярные сферические функции с теми же индексами, или определенные линейные комбинации таких функций.
Симметрии в квантовой механике — преобразования пространства-времени и частиц, которые оставляют неизменными уравнения квантовой механики. Рассматриваются во многих разделах квантовой механики, которые включают релятивистскую квантовую механику, квантовую теорию поля, стандартную модель и физику конденсированного состояния. В целом, симметрия в физике, законы инвариантности и сохранения являются основополагающими ограничениями для формулирования физических теорий и моделей. На практике это мощные методы решения задач и прогнозирования того, что может случиться. Хотя законы сохранения не всегда дают конечное решение проблемы, но они формируют правильные ограничения и наметки к решению множества задач.
В теории многих тел термин функция Грина иногда используется как синоним корреляционной функции, но относится к корреляторам операторов поля или операторам рождения и уничтожения.
Мультипольное излучение — излучение, обусловленное изменением во времени мультипольных моментов системы. Используется для описания электромагнитного или гравитационного излучения от изменяющегося во времени (нестационарного) распределения удалённых источников. Мультипольное разложение применяется к физическим явлениям, которые происходят на разных масштабах — от гравитационных волн из-за столкновения галактик до гамма-излучения в результате радиоактивного распада. Мультипольное излучение анализируется способами, схожими с применяемыми для мультипольного разложения полей от стационарных источников. Однако есть важные отличия, поскольку поля мультипольного излучения ведут себя несколько иначе полей от стационарных источников. Эта статья в первую очередь касается электромагнитного мультипольного излучения, хотя гравитационные волны рассматриваются аналогично.
Анализ парциальных волн в контексте квантовой механики относится к методу решения задач рассеяния путём разложения каждой волны на составляющие её компоненты углового момента и построения решения с использованием граничных условий.
Эта страница основана на статье Википедии. Текст доступен на условиях лицензии CC BY-SA 4.0; могут применяться дополнительные условия. Изображения, видео и звуки доступны по их собственным лицензиям.