Лемма Шварца

Перейти к навигацииПерейти к поиску

Лемма Шварца — классический результат комплексного анализа о гармонических отображениях из круга в себя.

Названа в честь Карлa Шварцa.

Формулировка

Пусть  — единичный круг на комплексной плоскости . Далее, пусть функция аналитична в и удовлетворяет двум условиям:

  1. ;
  2. , или, что равносильно, .

Тогда:

  1. в ;
  2. .

Более того, оба эти неравенства превращаются в равенства тогда и только тогда, когда функция имеет вид , то есть она сводится к повороту. Идея доказательства в том, что функция будет аналитичной при и применения к ней принципа максимума для гармонических функций.

Вариации и обобщения

  • Лемма Шварца применением к исходному кругу дробно-линейного отображения автоматически ведёт к более общему утверждению — теореме Шварца — Пика.

Литература

  • Шабат Б. В. Введение в комплексный анализ. — М.: Наука, 1969. — С. 192. — 577 с.
  • Титчмарш Е. Теория функций: Пер. с англ. — 2-е изд., перераб. — М.: Наука, 1980. — 464 с.
  • Привалов И. И. Введение в теорию функций комплексного переменного: Пособие для высшей школы. — М.Л.: Государственное издательство, 1927. — 316 с.
  • Евграфов М. А. Аналитические функции. — 2-е изд., перераб. и дополн. — М.: Наука, 1968. — 472 с.